Certification Problem

Input (TPDB TRS_Standard/HirokawaMiddeldorp_04/t013)

The rewrite relation of the following TRS is considered.

-(x,0) x (1)
-(0,s(y)) 0 (2)
-(s(x),s(y)) -(x,y) (3)
f(0) 0 (4)
f(s(x)) -(s(x),g(f(x))) (5)
g(0) s(0) (6)
g(s(x)) -(s(x),f(g(x))) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Switch to Innermost Termination

The TRS is overlay and locally confluent:

10

Hence, it suffices to show innermost termination in the following.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
-#(s(x),s(y)) -#(x,y) (8)
f#(s(x)) -#(s(x),g(f(x))) (9)
f#(s(x)) g#(f(x)) (10)
f#(s(x)) f#(x) (11)
g#(s(x)) -#(s(x),f(g(x))) (12)
g#(s(x)) f#(g(x)) (13)
g#(s(x)) g#(x) (14)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.