Certification Problem

Input (TPDB TRS_Standard/Mixed_TRS/beans)

The rewrite relation of the following TRS is considered.

f(x,f(s(s(y)),f(z,w))) f(s(x),f(y,f(s(z),w))) (1)
L(f(s(s(y)),f(z,w))) L(f(s(0),f(y,f(s(z),w)))) (2)
f(x,f(s(s(y)),nil)) f(s(x),f(y,f(s(0),nil))) (3)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
f#(x,f(s(s(y)),f(z,w))) f#(s(x),f(y,f(s(z),w))) (4)
f#(x,f(s(s(y)),f(z,w))) f#(y,f(s(z),w)) (5)
f#(x,f(s(s(y)),f(z,w))) f#(s(z),w) (6)
L#(f(s(s(y)),f(z,w))) L#(f(s(0),f(y,f(s(z),w)))) (7)
L#(f(s(s(y)),f(z,w))) f#(s(0),f(y,f(s(z),w))) (8)
L#(f(s(s(y)),f(z,w))) f#(y,f(s(z),w)) (9)
L#(f(s(s(y)),f(z,w))) f#(s(z),w) (10)
f#(x,f(s(s(y)),nil)) f#(s(x),f(y,f(s(0),nil))) (11)
f#(x,f(s(s(y)),nil)) f#(y,f(s(0),nil)) (12)
f#(x,f(s(s(y)),nil)) f#(s(0),nil) (13)

1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.