The rewrite relation of the following TRS is considered.
dx(X) |
→ |
one |
(1) |
dx(a) |
→ |
zero |
(2) |
dx(plus(ALPHA,BETA)) |
→ |
plus(dx(ALPHA),dx(BETA)) |
(3) |
dx(times(ALPHA,BETA)) |
→ |
plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) |
(4) |
dx(minus(ALPHA,BETA)) |
→ |
minus(dx(ALPHA),dx(BETA)) |
(5) |
dx(neg(ALPHA)) |
→ |
neg(dx(ALPHA)) |
(6) |
dx(div(ALPHA,BETA)) |
→ |
minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) |
(7) |
dx(ln(ALPHA)) |
→ |
div(dx(ALPHA),ALPHA) |
(8) |
dx(exp(ALPHA,BETA)) |
→ |
plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) |
(9) |
dx(X) |
→ |
one |
(1) |
dx(a) |
→ |
zero |
(2) |
dx(plus(ALPHA,BETA)) |
→ |
plus(dx(ALPHA),dx(BETA)) |
(3) |
dx(times(ALPHA,BETA)) |
→ |
plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) |
(4) |
dx(minus(ALPHA,BETA)) |
→ |
minus(dx(ALPHA),dx(BETA)) |
(5) |
dx(div(ALPHA,BETA)) |
→ |
minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) |
(7) |
dx(ln(ALPHA)) |
→ |
div(dx(ALPHA),ALPHA) |
(8) |
dx(exp(ALPHA,BETA)) |
→ |
plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) |
(9) |
There are no rules in the TRS. Hence, it is terminating.