The rewrite relation of the following TRS is considered.
dx(X) | → | one | (1) |
dx(a) | → | zero | (2) |
dx(plus(ALPHA,BETA)) | → | plus(dx(ALPHA),dx(BETA)) | (3) |
dx(times(ALPHA,BETA)) | → | plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) | (4) |
dx(minus(ALPHA,BETA)) | → | minus(dx(ALPHA),dx(BETA)) | (5) |
dx(neg(ALPHA)) | → | neg(dx(ALPHA)) | (6) |
dx(div(ALPHA,BETA)) | → | minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) | (7) |
dx(ln(ALPHA)) | → | div(dx(ALPHA),ALPHA) | (8) |
dx(exp(ALPHA,BETA)) | → | plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) | (9) |
prec(dx) | = | 6 | stat(dx) | = | mul | |
prec(one) | = | 6 | stat(one) | = | mul | |
prec(a) | = | 0 | stat(a) | = | mul | |
prec(zero) | = | 0 | stat(zero) | = | mul | |
prec(plus) | = | 1 | stat(plus) | = | lex | |
prec(times) | = | 1 | stat(times) | = | mul | |
prec(minus) | = | 2 | stat(minus) | = | mul | |
prec(div) | = | 3 | stat(div) | = | mul | |
prec(exp) | = | 3 | stat(exp) | = | mul | |
prec(two) | = | 4 | stat(two) | = | mul | |
prec(ln) | = | 5 | stat(ln) | = | mul |
π(dx) | = | [1] |
π(one) | = | [] |
π(a) | = | [] |
π(zero) | = | [] |
π(plus) | = | [2,1] |
π(times) | = | [1,2] |
π(minus) | = | [1,2] |
π(neg) | = | 1 |
π(div) | = | [1,2] |
π(exp) | = | [1,2] |
π(two) | = | [] |
π(ln) | = | [1] |
dx(X) | → | one | (1) |
dx(a) | → | zero | (2) |
dx(plus(ALPHA,BETA)) | → | plus(dx(ALPHA),dx(BETA)) | (3) |
dx(times(ALPHA,BETA)) | → | plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) | (4) |
dx(minus(ALPHA,BETA)) | → | minus(dx(ALPHA),dx(BETA)) | (5) |
dx(div(ALPHA,BETA)) | → | minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) | (7) |
dx(ln(ALPHA)) | → | div(dx(ALPHA),ALPHA) | (8) |
dx(exp(ALPHA,BETA)) | → | plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) | (9) |
prec(dx) | = | 1 | weight(dx) | = | 2 | ||||
prec(neg) | = | 0 | weight(neg) | = | 1 |
dx(neg(ALPHA)) | → | neg(dx(ALPHA)) | (6) |
There are no rules in the TRS. Hence, it is terminating.