Certification Problem
Input (TPDB TRS_Standard/SK90/2.32)
The rewrite relation of the following TRS is considered.
not(x) |
→ |
if(x,false,true) |
(1) |
and(x,y) |
→ |
if(x,y,false) |
(2) |
or(x,y) |
→ |
if(x,true,y) |
(3) |
implies(x,y) |
→ |
if(x,y,true) |
(4) |
=(x,x) |
→ |
true |
(5) |
=(x,y) |
→ |
if(x,y,not(y)) |
(6) |
if(true,x,y) |
→ |
x |
(7) |
if(false,x,y) |
→ |
y |
(8) |
if(x,x,if(x,false,true)) |
→ |
true |
(9) |
=(x,y) |
→ |
if(x,y,if(y,false,true)) |
(10) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by AProVE @ termCOMP 2023)
1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[not(x1)] |
= |
1 · x1
|
[if(x1, x2, x3)] |
= |
1 · x1 + 1 · x2 + 1 · x3
|
[false] |
= |
0 |
[true] |
= |
0 |
[and(x1, x2)] |
= |
2 + 2 · x1 + 2 · x2
|
[or(x1, x2)] |
= |
2 + 2 · x1 + 2 · x2
|
[implies(x1, x2)] |
= |
1 + 2 · x1 + 1 · x2
|
[=(x1, x2)] |
= |
1 + 2 · x1 + 2 · x2
|
all of the following rules can be deleted.
and(x,y) |
→ |
if(x,y,false) |
(2) |
or(x,y) |
→ |
if(x,true,y) |
(3) |
implies(x,y) |
→ |
if(x,y,true) |
(4) |
=(x,x) |
→ |
true |
(5) |
=(x,y) |
→ |
if(x,y,not(y)) |
(6) |
=(x,y) |
→ |
if(x,y,if(y,false,true)) |
(10) |
1.1 Rule Removal
Using the
Knuth Bendix order with w0 = 1 and the following precedence and weight functions
prec(false) |
= |
2 |
|
weight(false) |
= |
1 |
|
|
|
prec(true) |
= |
3 |
|
weight(true) |
= |
1 |
|
|
|
prec(not) |
= |
1 |
|
weight(not) |
= |
2 |
|
|
|
prec(if) |
= |
0 |
|
weight(if) |
= |
0 |
|
|
|
all of the following rules can be deleted.
not(x) |
→ |
if(x,false,true) |
(1) |
if(true,x,y) |
→ |
x |
(7) |
if(false,x,y) |
→ |
y |
(8) |
if(x,x,if(x,false,true)) |
→ |
true |
(9) |
1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.