Certification Problem
Input (TPDB TRS_Standard/SK90/2.39)
The rewrite relation of the following TRS is considered.
rev(nil) |
→ |
nil |
(1) |
rev(.(x,y)) |
→ |
++(rev(y),.(x,nil)) |
(2) |
car(.(x,y)) |
→ |
x |
(3) |
cdr(.(x,y)) |
→ |
y |
(4) |
null(nil) |
→ |
true |
(5) |
null(.(x,y)) |
→ |
false |
(6) |
++(nil,y) |
→ |
y |
(7) |
++(.(x,y),z) |
→ |
.(x,++(y,z)) |
(8) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by AProVE @ termCOMP 2023)
1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[rev(x1)] |
= |
2 · x1
|
[nil] |
= |
0 |
[.(x1, x2)] |
= |
2 · x1 + 1 · x2
|
[++(x1, x2)] |
= |
1 · x1 + 1 · x2
|
[car(x1)] |
= |
2 · x1
|
[cdr(x1)] |
= |
2 · x1
|
[null(x1)] |
= |
1 + 2 · x1
|
[true] |
= |
1 |
[false] |
= |
0 |
all of the following rules can be deleted.
1.1 Rule Removal
Using the
prec(rev) |
= |
4 |
|
stat(rev) |
= |
mul
|
prec(nil) |
= |
2 |
|
stat(nil) |
= |
mul
|
prec(.) |
= |
0 |
|
stat(.) |
= |
mul
|
prec(++) |
= |
3 |
|
stat(++) |
= |
mul
|
prec(true) |
= |
1 |
|
stat(true) |
= |
mul
|
π(rev) |
= |
[1] |
π(nil) |
= |
[] |
π(.) |
= |
[1,2] |
π(++) |
= |
[1,2] |
π(car) |
= |
1 |
π(cdr) |
= |
1 |
π(null) |
= |
1 |
π(true) |
= |
[] |
all of the following rules can be deleted.
rev(nil) |
→ |
nil |
(1) |
rev(.(x,y)) |
→ |
++(rev(y),.(x,nil)) |
(2) |
car(.(x,y)) |
→ |
x |
(3) |
cdr(.(x,y)) |
→ |
y |
(4) |
null(nil) |
→ |
true |
(5) |
++(nil,y) |
→ |
y |
(7) |
++(.(x,y),z) |
→ |
.(x,++(y,z)) |
(8) |
1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.