The rewrite relation of the following TRS is considered.
admit(x,nil) | → | nil | (1) |
admit(x,.(u,.(v,.(w,z)))) | → | cond(=(sum(x,u,v),w),.(u,.(v,.(w,admit(carry(x,u,v),z))))) | (2) |
cond(true,y) | → | y | (3) |
prec(admit) | = | 5 | stat(admit) | = | lex | |
prec(nil) | = | 1 | stat(nil) | = | mul | |
prec(.) | = | 5 | stat(.) | = | lex | |
prec(w) | = | 0 | stat(w) | = | mul | |
prec(cond) | = | 2 | stat(cond) | = | lex | |
prec(=) | = | 3 | stat(=) | = | mul | |
prec(sum) | = | 4 | stat(sum) | = | lex | |
prec(carry) | = | 0 | stat(carry) | = | mul | |
prec(true) | = | 6 | stat(true) | = | mul |
π(admit) | = | [2,1] |
π(nil) | = | [] |
π(.) | = | [1,2] |
π(w) | = | [] |
π(cond) | = | [2,1] |
π(=) | = | [1,2] |
π(sum) | = | [1,3,2] |
π(carry) | = | [1,2,3] |
π(true) | = | [] |
admit(x,nil) | → | nil | (1) |
admit(x,.(u,.(v,.(w,z)))) | → | cond(=(sum(x,u,v),w),.(u,.(v,.(w,admit(carry(x,u,v),z))))) | (2) |
cond(true,y) | → | y | (3) |
There are no rules in the TRS. Hence, it is terminating.