Certification Problem

Input (TPDB TRS_Standard/SK90/4.03)

The rewrite relation of the following TRS is considered.

+(x,0) x (1)
+(minus(x),x) 0 (2)
minus(0) 0 (3)
minus(minus(x)) x (4)
minus(+(x,y)) +(minus(y),minus(x)) (5)
*(x,1) x (6)
*(x,0) 0 (7)
*(x,+(y,z)) +(*(x,y),*(x,z)) (8)
*(x,minus(y)) minus(*(x,y)) (9)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(+) = 1 stat(+) = mul
prec(0) = 0 stat(0) = mul
prec(*) = 2 stat(*) = lex
prec(1) = 3 stat(1) = mul

π(+) = [1,2]
π(0) = []
π(minus) = 1
π(*) = [1,2]
π(1) = []

all of the following rules can be deleted.
+(x,0) x (1)
+(minus(x),x) 0 (2)
*(x,1) x (6)
*(x,0) 0 (7)
*(x,+(y,z)) +(*(x,y),*(x,z)) (8)

1.1 Rule Removal

Using the
prec(minus) = 2 stat(minus) = mul
prec(0) = 0 stat(0) = mul
prec(+) = 1 stat(+) = mul
prec(*) = 3 stat(*) = lex

π(minus) = [1]
π(0) = []
π(+) = [1,2]
π(*) = [1,2]

all of the following rules can be deleted.
minus(0) 0 (3)
minus(minus(x)) x (4)
minus(+(x,y)) +(minus(y),minus(x)) (5)
*(x,minus(y)) minus(*(x,y)) (9)

1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.