Certification Problem

Input (TPDB TRS_Standard/SK90/4.14)

The rewrite relation of the following TRS is considered.

p(s(x)) x (1)
s(p(x)) x (2)
+(0,y) y (3)
+(s(x),y) s(+(x,y)) (4)
+(p(x),y) p(+(x,y)) (5)
minus(0) 0 (6)
minus(s(x)) p(minus(x)) (7)
minus(p(x)) s(minus(x)) (8)
*(0,y) 0 (9)
*(s(x),y) +(*(x,y),y) (10)
*(p(x),y) +(*(x,y),minus(y)) (11)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(p) = 1 stat(p) = mul
prec(s) = 1 stat(s) = mul
prec(+) = 2 stat(+) = mul
prec(0) = 0 stat(0) = mul
prec(*) = 3 stat(*) = mul

π(p) = [1]
π(s) = [1]
π(+) = [1,2]
π(0) = []
π(minus) = 1
π(*) = [1,2]

all of the following rules can be deleted.
p(s(x)) x (1)
s(p(x)) x (2)
+(0,y) y (3)
+(s(x),y) s(+(x,y)) (4)
+(p(x),y) p(+(x,y)) (5)
*(0,y) 0 (9)
*(s(x),y) +(*(x,y),y) (10)
*(p(x),y) +(*(x,y),minus(y)) (11)

1.1 Rule Removal

Using the Knuth Bendix order with w0 = 1 and the following precedence and weight functions
prec(0) = 1 weight(0) = 1
prec(minus) = 3 weight(minus) = 2
prec(s) = 0 weight(s) = 1
prec(p) = 2 weight(p) = 1
all of the following rules can be deleted.
minus(0) 0 (6)
minus(s(x)) p(minus(x)) (7)
minus(p(x)) s(minus(x)) (8)

1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.