Certification Problem

Input (TPDB TRS_Standard/SK90/4.20)

The rewrite relation of the following TRS is considered.

not(x) xor(x,true) (1)
or(x,y) xor(and(x,y),xor(x,y)) (2)
implies(x,y) xor(and(x,y),xor(x,true)) (3)
and(x,true) x (4)
and(x,false) false (5)
and(x,x) x (6)
xor(x,false) x (7)
xor(x,x) false (8)
and(xor(x,y),z) xor(and(x,z),and(y,z)) (9)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(not) = 1 stat(not) = mul
prec(xor) = 0 stat(xor) = mul
prec(true) = 1 stat(true) = mul
prec(or) = 3 stat(or) = mul
prec(and) = 2 stat(and) = mul
prec(implies) = 4 stat(implies) = mul
prec(false) = 0 stat(false) = mul

π(not) = [1]
π(xor) = [1,2]
π(true) = []
π(or) = [1,2]
π(and) = [1,2]
π(implies) = [1,2]
π(false) = []

all of the following rules can be deleted.
not(x) xor(x,true) (1)
or(x,y) xor(and(x,y),xor(x,y)) (2)
implies(x,y) xor(and(x,y),xor(x,true)) (3)
and(x,true) x (4)
and(x,false) false (5)
and(x,x) x (6)
xor(x,false) x (7)
xor(x,x) false (8)
and(xor(x,y),z) xor(and(x,z),and(y,z)) (9)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.