Certification Problem

Input (TPDB TRS_Standard/Secret_05_TRS/aprove2)

The rewrite relation of the following TRS is considered.

ge(x,0) true (1)
ge(0,s(x)) false (2)
ge(s(x),s(y)) ge(x,y) (3)
minus(x,0) x (4)
minus(s(x),s(y)) minus(x,y) (5)
div(x,y) ify(ge(y,s(0)),x,y) (6)
ify(false,x,y) divByZeroError (7)
ify(true,x,y) if(ge(x,y),x,y) (8)
if(false,x,y) 0 (9)
if(true,x,y) s(div(minus(x,y),y)) (10)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Switch to Innermost Termination

The TRS is overlay and locally confluent:

10

Hence, it suffices to show innermost termination in the following.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
ge#(s(x),s(y)) ge#(x,y) (11)
minus#(s(x),s(y)) minus#(x,y) (12)
div#(x,y) ify#(ge(y,s(0)),x,y) (13)
div#(x,y) ge#(y,s(0)) (14)
ify#(true,x,y) if#(ge(x,y),x,y) (15)
ify#(true,x,y) ge#(x,y) (16)
if#(true,x,y) div#(minus(x,y),y) (17)
if#(true,x,y) minus#(x,y) (18)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 3 components.