Certification Problem

Input (TPDB TRS_Standard/Secret_05_TRS/aprove5)

The rewrite relation of the following TRS is considered.

minus(x,0) x (1)
minus(0,y) 0 (2)
minus(s(x),s(y)) minus(p(s(x)),p(s(y))) (3)
minus(x,plus(y,z)) minus(minus(x,y),z) (4)
p(s(s(x))) s(p(s(x))) (5)
p(0) s(s(0)) (6)
div(s(x),s(y)) s(div(minus(x,y),s(y))) (7)
div(plus(x,y),z) plus(div(x,z),div(y,z)) (8)
plus(0,y) y (9)
plus(s(x),y) s(plus(y,minus(s(x),s(0)))) (10)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
minus#(s(x),s(y)) minus#(p(s(x)),p(s(y))) (11)
minus#(s(x),s(y)) p#(s(x)) (12)
minus#(s(x),s(y)) p#(s(y)) (13)
minus#(x,plus(y,z)) minus#(minus(x,y),z) (14)
minus#(x,plus(y,z)) minus#(x,y) (15)
p#(s(s(x))) p#(s(x)) (16)
div#(s(x),s(y)) div#(minus(x,y),s(y)) (17)
div#(s(x),s(y)) minus#(x,y) (18)
div#(plus(x,y),z) plus#(div(x,z),div(y,z)) (19)
div#(plus(x,y),z) div#(x,z) (20)
div#(plus(x,y),z) div#(y,z) (21)
plus#(s(x),y) plus#(y,minus(s(x),s(0))) (22)
plus#(s(x),y) minus#(s(x),s(0)) (23)

1.1 Dependency Graph Processor

The dependency pairs are split into 4 components.