Certification Problem

Input (TPDB TRS_Standard/Secret_05_TRS/matchbox1)

The rewrite relation of the following TRS is considered.

f(f(x,a),y) f(y,f(x,y)) (1)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
f#(f(x,a),y) f#(y,f(x,y)) (2)
f#(f(x,a),y) f#(x,y) (3)

1.1 Forward Instantiation Processor

We instantiate the pair to the following set of pairs
f#(f(x0,a),f(y_0,a)) f#(f(y_0,a),f(x0,f(y_0,a))) (4)

1.1.1 Forward Instantiation Processor

We instantiate the pair to the following set of pairs
f#(f(f(y_0,a),a),x1) f#(f(y_0,a),x1) (5)
f#(f(f(y_0,a),a),f(y_1,a)) f#(f(y_0,a),f(y_1,a)) (6)

1.1.1.1 Reduction Pair Processor

Using the linear polynomial interpretation over the rationals with delta = 3/256
[f#(x1, x2)] = 0 + 0 · x1 + 1/4 · x2
[f(x1, x2)] = 0 + 0 · x1 + 1/4 · x2
[a] = 1/4
the pair
f#(f(x0,a),f(y_0,a)) f#(f(y_0,a),f(x0,f(y_0,a))) (4)
could be deleted.

1.1.1.1.1 Size-Change Termination

Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.

f#(f(f(y_0,a),a),x1) f#(f(y_0,a),x1) (5)
1 > 1
2 2
f#(f(f(y_0,a),a),f(y_1,a)) f#(f(y_0,a),f(y_1,a)) (6)
1 > 1
2 2

As there is no critical graph in the transitive closure, there are no infinite chains.