Certification Problem

Input (TPDB TRS_Standard/Secret_06_TRS/2)

The rewrite relation of the following TRS is considered.

c(c(c(b(x)))) a(1,b(c(x))) (1)
b(c(b(c(x)))) a(0,a(1,x)) (2)
a(0,x) c(c(x)) (3)
a(1,x) c(b(x)) (4)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
c#(c(c(b(x)))) a#(1,b(c(x))) (5)
c#(c(c(b(x)))) b#(c(x)) (6)
c#(c(c(b(x)))) c#(x) (7)
b#(c(b(c(x)))) a#(0,a(1,x)) (8)
b#(c(b(c(x)))) a#(1,x) (9)
a#(0,x) c#(c(x)) (10)
a#(0,x) c#(x) (11)
a#(1,x) c#(b(x)) (12)
a#(1,x) b#(x) (13)

1.1 Monotonic Reduction Pair Processor

Using the linear polynomial interpretation over the naturals
[c(x1)] = 1 + 1 · x1
[b(x1)] = 1 + 1 · x1
[a(x1, x2)] = 2 + 2 · x1 + 1 · x2
[1] = 0
[0] = 0
[c#(x1)] = 1 · x1
[a#(x1, x2)] = 1 + 1 · x1 + 1 · x2
[b#(x1)] = 1 · x1
the pairs
c#(c(c(b(x)))) b#(c(x)) (6)
c#(c(c(b(x)))) c#(x) (7)
b#(c(b(c(x)))) a#(1,x) (9)
a#(0,x) c#(x) (11)
a#(1,x) b#(x) (13)
and no rules could be deleted.

1.1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.