The rewrite relation of the following TRS is considered.
c(z,x,a) | → | f(b(b(f(z),z),x)) | (1) |
b(y,b(z,a)) | → | f(b(c(f(a),y,z),z)) | (2) |
f(c(c(z,a,a),x,a)) | → | z | (3) |
c#(z,x,a) | → | f#(b(b(f(z),z),x)) | (4) |
c#(z,x,a) | → | b#(b(f(z),z),x) | (5) |
c#(z,x,a) | → | b#(f(z),z) | (6) |
c#(z,x,a) | → | f#(z) | (7) |
b#(y,b(z,a)) | → | f#(b(c(f(a),y,z),z)) | (8) |
b#(y,b(z,a)) | → | b#(c(f(a),y,z),z) | (9) |
b#(y,b(z,a)) | → | c#(f(a),y,z) | (10) |
b#(y,b(z,a)) | → | f#(a) | (11) |
The dependency pairs are split into 1 component.
c#(z,x,a) | → | b#(b(f(z),z),x) | (5) |
b#(y,b(z,a)) | → | b#(c(f(a),y,z),z) | (9) |
b#(y,b(z,a)) | → | c#(f(a),y,z) | (10) |
c#(z,x,a) | → | b#(f(z),z) | (6) |
c#(f(a),y_0,a) | → | b#(b(f(f(a)),f(a)),y_0) | (12) |
c#(f(a),y_0,a) | → | b#(f(f(a)),f(a)) | (13) |
The dependency pairs are split into 1 component.
b#(y,b(z,a)) | → | c#(f(a),y,z) | (10) |
c#(f(a),y_0,a) | → | b#(b(f(f(a)),f(a)),y_0) | (12) |
b#(y,b(z,a)) | → | b#(c(f(a),y,z),z) | (9) |
[b#(x1, x2)] | = | -1 + 2 · x1 + 2 · x2 |
[c(x1, x2, x3)] | = | 2 · x1 + x2 |
[a] | = | 1 |
[f(x1)] | = | -2 + x1 |
[b(x1, x2)] | = | x1 + x2 |
[c#(x1, x2, x3)] | = | 1 + 2 · x2 |
c#(f(a),y_0,a) | → | b#(b(f(f(a)),f(a)),y_0) | (12) |
b#(y,b(z,a)) | → | b#(c(f(a),y,z),z) | (9) |
[b(x1, x2)] | = | 1 · x1 + 1 · x2 |
[a] | = | 0 |
[f(x1)] | = | 1 · x1 |
[c#(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[b#(x1, x2)] | = | 1 · x1 + 1 · x2 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
b#(y,b(z,a)) | → | c#(f(a),y,z) | (10) |
1 | ≥ | 2 | |
2 | > | 3 |
As there is no critical graph in the transitive closure, there are no infinite chains.