The rewrite relation of the following TRS is considered.
D(t) | → | s(h) | (1) |
D(constant) | → | h | (2) |
D(b(x,y)) | → | b(D(x),D(y)) | (3) |
D(c(x,y)) | → | b(c(y,D(x)),c(x,D(y))) | (4) |
D(m(x,y)) | → | m(D(x),D(y)) | (5) |
D(opp(x)) | → | opp(D(x)) | (6) |
D(div(x,y)) | → | m(div(D(x),y),div(c(x,D(y)),pow(y,2))) | (7) |
D(ln(x)) | → | div(D(x),x) | (8) |
D(pow(x,y)) | → | b(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) | (9) |
b(h,x) | → | x | (10) |
b(x,h) | → | x | (11) |
b(s(x),s(y)) | → | s(s(b(x,y))) | (12) |
b(b(x,y),z) | → | b(x,b(y,z)) | (13) |
prec(D) | = | 9 | stat(D) | = | mul | |
prec(t) | = | 10 | stat(t) | = | mul | |
prec(h) | = | 0 | stat(h) | = | mul | |
prec(constant) | = | 11 | stat(constant) | = | mul | |
prec(b) | = | 1 | stat(b) | = | lex | |
prec(c) | = | 2 | stat(c) | = | mul | |
prec(m) | = | 3 | stat(m) | = | mul | |
prec(opp) | = | 4 | stat(opp) | = | mul | |
prec(div) | = | 6 | stat(div) | = | mul | |
prec(pow) | = | 5 | stat(pow) | = | mul | |
prec(2) | = | 7 | stat(2) | = | mul | |
prec(ln) | = | 5 | stat(ln) | = | mul | |
prec(1) | = | 8 | stat(1) | = | mul |
π(D) | = | [1] |
π(t) | = | [] |
π(s) | = | 1 |
π(h) | = | [] |
π(constant) | = | [] |
π(b) | = | [1,2] |
π(c) | = | [1,2] |
π(m) | = | [1,2] |
π(opp) | = | [1] |
π(div) | = | [1,2] |
π(pow) | = | [1,2] |
π(2) | = | [] |
π(ln) | = | [1] |
π(1) | = | [] |
D(t) | → | s(h) | (1) |
D(constant) | → | h | (2) |
D(b(x,y)) | → | b(D(x),D(y)) | (3) |
D(c(x,y)) | → | b(c(y,D(x)),c(x,D(y))) | (4) |
D(m(x,y)) | → | m(D(x),D(y)) | (5) |
D(opp(x)) | → | opp(D(x)) | (6) |
D(div(x,y)) | → | m(div(D(x),y),div(c(x,D(y)),pow(y,2))) | (7) |
D(ln(x)) | → | div(D(x),x) | (8) |
D(pow(x,y)) | → | b(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) | (9) |
b(h,x) | → | x | (10) |
b(x,h) | → | x | (11) |
b(b(x,y),z) | → | b(x,b(y,z)) | (13) |
prec(s) | = | 0 | weight(s) | = | 1 | ||||
prec(b) | = | 1 | weight(b) | = | 0 |
b(s(x),s(y)) | → | s(s(b(x,y))) | (12) |
There are no rules in the TRS. Hence, it is terminating.