Certification Problem

Input (TPDB TRS_Standard/Secret_07_TRS/secret3)

The rewrite relation of the following TRS is considered.

app(nil,k) k (1)
app(l,nil) l (2)
app(cons(x,l),k) cons(x,app(l,k)) (3)
sum(cons(x,nil)) cons(x,nil) (4)
sum(cons(x,cons(y,l))) sum(cons(a(x,y,h),l)) (5)
a(h,h,x) s(x) (6)
a(x,s(y),h) a(x,y,s(h)) (7)
a(x,s(y),s(z)) a(x,y,a(x,s(y),z)) (8)
a(s(x),h,z) a(x,z,z) (9)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(app) = 4 stat(app) = lex
prec(nil) = 0 stat(nil) = lex
prec(cons) = 3 stat(cons) = lex
prec(sum) = 5 stat(sum) = lex
prec(a) = 2 stat(a) = lex
prec(h) = 2 stat(h) = lex
prec(s) = 1 stat(s) = lex

π(app) = [2,1]
π(nil) = []
π(cons) = [2,1]
π(sum) = [1]
π(a) = [1,2,3]
π(h) = []
π(s) = [1]

all of the following rules can be deleted.
app(nil,k) k (1)
app(l,nil) l (2)
app(cons(x,l),k) cons(x,app(l,k)) (3)
sum(cons(x,nil)) cons(x,nil) (4)
sum(cons(x,cons(y,l))) sum(cons(a(x,y,h),l)) (5)
a(h,h,x) s(x) (6)
a(x,s(y),h) a(x,y,s(h)) (7)
a(x,s(y),s(z)) a(x,y,a(x,s(y),z)) (8)
a(s(x),h,z) a(x,z,z) (9)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.