The rewrite relation of the following TRS is considered.
f(x,f(y,a)) | → | f(f(f(f(a,a),y),h(a)),x) | (1) |
The TRS is overlay and locally confluent:
10Hence, it suffices to show innermost termination in the following.
f#(x,f(y,a)) | → | f#(f(f(f(a,a),y),h(a)),x) | (2) |
f#(x,f(y,a)) | → | f#(f(f(a,a),y),h(a)) | (3) |
f#(x,f(y,a)) | → | f#(f(a,a),y) | (4) |
f#(x,f(y,a)) | → | f#(a,a) | (5) |
The dependency pairs are split into 1 component.
f#(x,f(y,a)) | → | f#(f(a,a),y) | (4) |
f#(x,f(y,a)) | → | f#(f(f(f(a,a),y),h(a)),x) | (2) |
f#(f(a,a),f(x1,a)) | → | f#(f(a,a),x1) | (6) |
f#(f(y_0,h(a)),f(x1,a)) | → | f#(f(a,a),x1) | (7) |
f#(f(y_0,h(a)),f(x1,a)) | → | f#(f(f(f(a,a),x1),h(a)),f(y_0,h(a))) | (8) |
f#(f(a,a),f(x1,a)) | → | f#(f(f(f(a,a),x1),h(a)),f(a,a)) | (9) |
The dependency pairs are split into 1 component.
f#(f(a,a),f(x1,a)) | → | f#(f(a,a),x1) | (6) |
f#(f(a,a),f(x1,a)) | → | f#(f(f(f(a,a),x1),h(a)),f(a,a)) | (9) |
f#(f(y_0,h(a)),f(x1,a)) | → | f#(f(a,a),x1) | (7) |
f#(f(y_0,h(a)),f(a,a)) | → | f#(f(a,a),a) | (10) |
The dependency pairs are split into 1 component.
f#(f(a,a),f(x1,a)) | → | f#(f(a,a),x1) | (6) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
f#(f(a,a),f(f(y_0,a),a)) | → | f#(f(a,a),f(y_0,a)) | (11) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
f#(f(a,a),f(f(y_0,a),a)) | → | f#(f(a,a),f(y_0,a)) | (11) |
1 | ≥ | 1 | |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.