The rewrite relation of the following TRS is considered.
app(nil,k) | → | k | (1) |
app(l,nil) | → | l | (2) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
sum(cons(x,nil)) | → | cons(x,nil) | (4) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
plus(0,y) | → | y | (7) |
plus(s(x),y) | → | s(plus(x,y)) | (8) |
sum#(app(l,cons(x,cons(y,k)))) | → | app#(l,sum(cons(x,cons(y,k)))) | (9) |
app#(cons(x,l),k) | → | app#(l,k) | (10) |
plus#(s(x),y) | → | plus#(x,y) | (11) |
sum#(cons(x,cons(y,l))) | → | plus#(x,y) | (12) |
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(cons(x,cons(y,k))) | (13) |
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (14) |
sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (15) |
The dependency pairs are split into 4 components.
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (14) |
[s(x1)] | = | 1 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 3 |
[0] | = | 1 |
[nil] | = | 1 |
[app#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + 1 |
[cons(x1, x2)] | = | x2 + 2 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 20163 |
sum(cons(x,nil)) | → | cons(x,nil) | (4) |
app(nil,k) | → | k | (1) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
app(l,nil) | → | l | (2) |
sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (14) |
The dependency pairs are split into 0 components.
sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (15) |
[s(x1)] | = | 1 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 17065 |
[0] | = | 1 |
[nil] | = | 17064 |
[app#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + 1 |
[cons(x1, x2)] | = | x2 + 1 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 20819 |
sum(cons(x,nil)) | → | cons(x,nil) | (4) |
app(nil,k) | → | k | (1) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
app(l,nil) | → | l | (2) |
sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (15) |
The dependency pairs are split into 0 components.
plus#(s(x),y) | → | plus#(x,y) | (11) |
[s(x1)] | = | x1 + 1 |
[plus#(x1, x2)] | = | x1 + 0 |
[sum(x1)] | = | 98764 |
[0] | = | 1 |
[nil] | = | 58177 |
[app#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | x1 + 2998 |
[cons(x1, x2)] | = | x2 + 40587 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 42632 |
sum(cons(x,nil)) | → | cons(x,nil) | (4) |
app(nil,k) | → | k | (1) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
app(l,nil) | → | l | (2) |
plus#(s(x),y) | → | plus#(x,y) | (11) |
The dependency pairs are split into 0 components.
app#(cons(x,l),k) | → | app#(l,k) | (10) |
[s(x1)] | = | x1 + 1 |
[plus#(x1, x2)] | = | 0 |
[sum(x1)] | = | 2 |
[0] | = | 1 |
[nil] | = | 1 |
[app#(x1, x2)] | = | x1 + 0 |
[plus(x1, x2)] | = | x1 + 2998 |
[cons(x1, x2)] | = | x2 + 1 |
[sum#(x1)] | = | x1 + 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
sum(cons(x,nil)) | → | cons(x,nil) | (4) |
app(nil,k) | → | k | (1) |
app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (5) |
sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (6) |
app(l,nil) | → | l | (2) |
app#(cons(x,l),k) | → | app#(l,k) | (10) |
The dependency pairs are split into 0 components.