The rewrite relation of the following TRS is considered.
le(0,y) | → | true | (1) |
le(s(x),0) | → | false | (2) |
le(s(x),s(y)) | → | le(x,y) | (3) |
minus(0,y) | → | 0 | (4) |
minus(s(x),y) | → | if_minus(le(s(x),y),s(x),y) | (5) |
if_minus(true,s(x),y) | → | 0 | (6) |
if_minus(false,s(x),y) | → | s(minus(x,y)) | (7) |
quot(0,s(y)) | → | 0 | (8) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (9) |
log(s(0)) | → | 0 | (10) |
log(s(s(x))) | → | s(log(s(quot(x,s(s(0)))))) | (11) |
quot#(s(x),s(y)) | → | minus#(x,y) | (12) |
minus#(s(x),y) | → | if_minus#(le(s(x),y),s(x),y) | (13) |
minus#(s(x),y) | → | le#(s(x),y) | (14) |
if_minus#(false,s(x),y) | → | minus#(x,y) | (15) |
log#(s(s(x))) | → | log#(s(quot(x,s(s(0))))) | (16) |
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (17) |
le#(s(x),s(y)) | → | le#(x,y) | (18) |
log#(s(s(x))) | → | quot#(x,s(s(0))) | (19) |
The dependency pairs are split into 4 components.
log#(s(s(x))) | → | log#(s(quot(x,s(s(0))))) | (16) |
[le(x1, x2)] | = | 1 |
[s(x1)] | = | x1 + 36467 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 0 |
[false] | = | 1 |
[log#(x1)] | = | x1 + 0 |
[true] | = | 1 |
[log(x1)] | = | 0 |
[0] | = | 1 |
[quot(x1, x2)] | = | x1 + 36466 |
[if_minus#(x1, x2, x3)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if_minus(x1, x2, x3)] | = | x2 + 0 |
[quot#(x1, x2)] | = | 0 |
minus(0,y) | → | 0 | (4) |
quot(0,s(y)) | → | 0 | (8) |
le(0,y) | → | true | (1) |
le(s(x),s(y)) | → | le(x,y) | (3) |
minus(s(x),y) | → | if_minus(le(s(x),y),s(x),y) | (5) |
if_minus(false,s(x),y) | → | s(minus(x,y)) | (7) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (9) |
if_minus(true,s(x),y) | → | 0 | (6) |
le(s(x),0) | → | false | (2) |
log#(s(s(x))) | → | log#(s(quot(x,s(s(0))))) | (16) |
The dependency pairs are split into 0 components.
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (17) |
[le(x1, x2)] | = | 1 |
[s(x1)] | = | x1 + 1 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 0 |
[false] | = | 1 |
[log#(x1)] | = | x1 + 0 |
[true] | = | 1 |
[log(x1)] | = | 0 |
[0] | = | 1 |
[quot(x1, x2)] | = | x1 + 36466 |
[if_minus#(x1, x2, x3)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if_minus(x1, x2, x3)] | = | x2 + 0 |
[quot#(x1, x2)] | = | x1 + 0 |
minus(0,y) | → | 0 | (4) |
quot(0,s(y)) | → | 0 | (8) |
le(0,y) | → | true | (1) |
le(s(x),s(y)) | → | le(x,y) | (3) |
minus(s(x),y) | → | if_minus(le(s(x),y),s(x),y) | (5) |
if_minus(false,s(x),y) | → | s(minus(x,y)) | (7) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (9) |
if_minus(true,s(x),y) | → | 0 | (6) |
le(s(x),0) | → | false | (2) |
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (17) |
The dependency pairs are split into 0 components.
minus#(s(x),y) | → | if_minus#(le(s(x),y),s(x),y) | (13) |
if_minus#(false,s(x),y) | → | minus#(x,y) | (15) |
[le(x1, x2)] | = | 1 |
[s(x1)] | = | x1 + 2 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 0 |
[false] | = | 1 |
[log#(x1)] | = | x1 + 0 |
[true] | = | 1 |
[log(x1)] | = | 0 |
[0] | = | 2 |
[quot(x1, x2)] | = | x1 + 29283 |
[if_minus#(x1, x2, x3)] | = | x1 + x2 + 0 |
[minus#(x1, x2)] | = | x1 + 2 |
[if_minus(x1, x2, x3)] | = | x2 + 0 |
[quot#(x1, x2)] | = | x1 + 0 |
minus(0,y) | → | 0 | (4) |
quot(0,s(y)) | → | 0 | (8) |
le(0,y) | → | true | (1) |
le(s(x),s(y)) | → | le(x,y) | (3) |
minus(s(x),y) | → | if_minus(le(s(x),y),s(x),y) | (5) |
if_minus(false,s(x),y) | → | s(minus(x,y)) | (7) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (9) |
if_minus(true,s(x),y) | → | 0 | (6) |
le(s(x),0) | → | false | (2) |
minus#(s(x),y) | → | if_minus#(le(s(x),y),s(x),y) | (13) |
if_minus#(false,s(x),y) | → | minus#(x,y) | (15) |
The dependency pairs are split into 0 components.
le#(s(x),s(y)) | → | le#(x,y) | (18) |
[le(x1, x2)] | = | 1 |
[s(x1)] | = | x1 + 1 |
[le#(x1, x2)] | = | x1 + 0 |
[minus(x1, x2)] | = | x1 + 0 |
[false] | = | 1 |
[log#(x1)] | = | x1 + 0 |
[true] | = | 1 |
[log(x1)] | = | 0 |
[0] | = | 1 |
[quot(x1, x2)] | = | x1 + 29283 |
[if_minus#(x1, x2, x3)] | = | x1 + 0 |
[minus#(x1, x2)] | = | 2 |
[if_minus(x1, x2, x3)] | = | x2 + 0 |
[quot#(x1, x2)] | = | x1 + 0 |
minus(0,y) | → | 0 | (4) |
quot(0,s(y)) | → | 0 | (8) |
le(0,y) | → | true | (1) |
le(s(x),s(y)) | → | le(x,y) | (3) |
minus(s(x),y) | → | if_minus(le(s(x),y),s(x),y) | (5) |
if_minus(false,s(x),y) | → | s(minus(x,y)) | (7) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (9) |
if_minus(true,s(x),y) | → | 0 | (6) |
le(s(x),0) | → | false | (2) |
le#(s(x),s(y)) | → | le#(x,y) | (18) |
The dependency pairs are split into 0 components.