The rewrite relation of the following TRS is considered.
0(#) | → | # | (1) |
+(x,#) | → | x | (2) |
+(#,x) | → | x | (3) |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
+(x,+(y,z)) | → | +(+(x,y),z) | (8) |
-(x,#) | → | x | (9) |
-(#,x) | → | # | (10) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
not(false) | → | true | (15) |
not(true) | → | false | (16) |
and(x,true) | → | x | (17) |
and(x,false) | → | false | (18) |
if(true,x,y) | → | x | (19) |
if(false,x,y) | → | y | (20) |
ge(0(x),0(y)) | → | ge(x,y) | (21) |
ge(0(x),1(y)) | → | not(ge(y,x)) | (22) |
ge(1(x),0(y)) | → | ge(x,y) | (23) |
ge(1(x),1(y)) | → | ge(x,y) | (24) |
ge(x,#) | → | true | (25) |
ge(#,1(x)) | → | false | (26) |
ge(#,0(x)) | → | ge(#,x) | (27) |
val(l(x)) | → | x | (28) |
val(n(x,y,z)) | → | x | (29) |
min(l(x)) | → | x | (30) |
min(n(x,y,z)) | → | min(y) | (31) |
max(l(x)) | → | x | (32) |
max(n(x,y,z)) | → | max(z) | (33) |
bs(l(x)) | → | true | (34) |
bs(n(x,y,z)) | → | and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) | (35) |
size(l(x)) | → | 1(#) | (36) |
size(n(x,y,z)) | → | +(+(size(x),size(y)),1(#)) | (37) |
wb(l(x)) | → | true | (38) |
wb(n(x,y,z)) | → | and(if(ge(size(y),size(z)),ge(1(#),-(size(y),size(z))),ge(1(#),-(size(z),size(y)))),and(wb(y),wb(z))) | (39) |
bs#(n(x,y,z)) | → | and#(ge(x,max(y)),ge(min(z),x)) | (40) |
wb#(n(x,y,z)) | → | wb#(z) | (41) |
wb#(n(x,y,z)) | → | if#(ge(size(y),size(z)),ge(1(#),-(size(y),size(z))),ge(1(#),-(size(z),size(y)))) | (42) |
wb#(n(x,y,z)) | → | size#(y) | (43) |
ge#(0(x),1(y)) | → | not#(ge(y,x)) | (44) |
wb#(n(x,y,z)) | → | wb#(y) | (45) |
wb#(n(x,y,z)) | → | and#(wb(y),wb(z)) | (46) |
wb#(n(x,y,z)) | → | ge#(1(#),-(size(z),size(y))) | (47) |
ge#(0(x),1(y)) | → | ge#(y,x) | (48) |
+#(0(x),0(y)) | → | +#(x,y) | (49) |
ge#(#,0(x)) | → | ge#(#,x) | (50) |
wb#(n(x,y,z)) | → | -#(size(z),size(y)) | (51) |
bs#(n(x,y,z)) | → | min#(z) | (52) |
wb#(n(x,y,z)) | → | size#(y) | (43) |
+#(x,+(y,z)) | → | +#(x,y) | (53) |
size#(n(x,y,z)) | → | size#(y) | (54) |
bs#(n(x,y,z)) | → | bs#(z) | (55) |
size#(n(x,y,z)) | → | +#(size(x),size(y)) | (56) |
-#(1(x),1(y)) | → | -#(x,y) | (57) |
-#(1(x),1(y)) | → | 0#(-(x,y)) | (58) |
+#(0(x),1(y)) | → | +#(x,y) | (59) |
size#(n(x,y,z)) | → | size#(x) | (60) |
wb#(n(x,y,z)) | → | size#(y) | (43) |
+#(1(x),0(y)) | → | +#(x,y) | (61) |
wb#(n(x,y,z)) | → | ge#(size(y),size(z)) | (62) |
+#(0(x),0(y)) | → | 0#(+(x,y)) | (63) |
ge#(0(x),0(y)) | → | ge#(x,y) | (64) |
+#(1(x),1(y)) | → | 0#(+(+(x,y),1(#))) | (65) |
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (66) |
bs#(n(x,y,z)) | → | and#(bs(y),bs(z)) | (67) |
wb#(n(x,y,z)) | → | size#(z) | (68) |
size#(n(x,y,z)) | → | +#(+(size(x),size(y)),1(#)) | (69) |
wb#(n(x,y,z)) | → | ge#(1(#),-(size(y),size(z))) | (70) |
bs#(n(x,y,z)) | → | ge#(min(z),x) | (71) |
max#(n(x,y,z)) | → | max#(z) | (72) |
wb#(n(x,y,z)) | → | and#(if(ge(size(y),size(z)),ge(1(#),-(size(y),size(z))),ge(1(#),-(size(z),size(y)))),and(wb(y),wb(z))) | (73) |
min#(n(x,y,z)) | → | min#(y) | (74) |
wb#(n(x,y,z)) | → | -#(size(y),size(z)) | (75) |
+#(1(x),1(y)) | → | +#(x,y) | (76) |
-#(0(x),0(y)) | → | -#(x,y) | (77) |
wb#(n(x,y,z)) | → | size#(z) | (68) |
ge#(1(x),0(y)) | → | ge#(x,y) | (78) |
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
wb#(n(x,y,z)) | → | size#(z) | (68) |
-#(0(x),1(y)) | → | -#(x,y) | (80) |
-#(0(x),0(y)) | → | 0#(-(x,y)) | (81) |
bs#(n(x,y,z)) | → | ge#(x,max(y)) | (82) |
bs#(n(x,y,z)) | → | and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) | (83) |
bs#(n(x,y,z)) | → | bs#(y) | (84) |
-#(1(x),0(y)) | → | -#(x,y) | (85) |
bs#(n(x,y,z)) | → | max#(y) | (86) |
+#(x,+(y,z)) | → | +#(+(x,y),z) | (87) |
ge#(1(x),1(y)) | → | ge#(x,y) | (88) |
The dependency pairs are split into 9 components.
bs#(n(x,y,z)) | → | bs#(y) | (84) |
bs#(n(x,y,z)) | → | bs#(z) | (55) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[n(x1, x2, x3)] | = | x2 + x3 + 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | x1 + 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
bs#(n(x,y,z)) | → | bs#(y) | (84) |
bs#(n(x,y,z)) | → | bs#(z) | (55) |
The dependency pairs are split into 0 components.
min#(n(x,y,z)) | → | min#(y) | (74) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[n(x1, x2, x3)] | = | x2 + 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | x1 + 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
min#(n(x,y,z)) | → | min#(y) | (74) |
The dependency pairs are split into 0 components.
max#(n(x,y,z)) | → | max#(z) | (72) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[n(x1, x2, x3)] | = | x3 + 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | x1 + 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
max#(n(x,y,z)) | → | max#(z) | (72) |
The dependency pairs are split into 0 components.
wb#(n(x,y,z)) | → | wb#(y) | (45) |
wb#(n(x,y,z)) | → | wb#(z) | (41) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[n(x1, x2, x3)] | = | x2 + x3 + 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | x1 + 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
wb#(n(x,y,z)) | → | wb#(y) | (45) |
wb#(n(x,y,z)) | → | wb#(z) | (41) |
The dependency pairs are split into 0 components.
ge#(1(x),1(y)) | → | ge#(x,y) | (88) |
ge#(0(x),0(y)) | → | ge#(x,y) | (64) |
ge#(1(x),0(y)) | → | ge#(x,y) | (78) |
ge#(0(x),1(y)) | → | ge#(y,x) | (48) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 1 |
[n(x1, x2, x3)] | = | 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | x1 + x2 + 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | x1 + 23676 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
ge#(1(x),1(y)) | → | ge#(x,y) | (88) |
ge#(0(x),0(y)) | → | ge#(x,y) | (64) |
ge#(1(x),0(y)) | → | ge#(x,y) | (78) |
ge#(0(x),1(y)) | → | ge#(y,x) | (48) |
The dependency pairs are split into 0 components.
ge#(#,0(x)) | → | ge#(#,x) | (50) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | 1 |
[n(x1, x2, x3)] | = | 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | x2 + 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | x1 + 23676 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
ge#(#,0(x)) | → | ge#(#,x) | (50) |
The dependency pairs are split into 0 components.
size#(n(x,y,z)) | → | size#(x) | (60) |
size#(n(x,y,z)) | → | size#(y) | (54) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | 1 |
[n(x1, x2, x3)] | = | x1 + x2 + 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | x1 + 0 |
[0(x1)] | = | 23676 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 0 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
size#(n(x,y,z)) | → | size#(x) | (60) |
size#(n(x,y,z)) | → | size#(y) | (54) |
The dependency pairs are split into 0 components.
+#(x,+(y,z)) | → | +#(+(x,y),z) | (87) |
+#(1(x),0(y)) | → | +#(x,y) | (61) |
+#(0(x),1(y)) | → | +#(x,y) | (59) |
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
+#(x,+(y,z)) | → | +#(x,y) | (53) |
+#(1(x),1(y)) | → | +#(x,y) | (76) |
+#(0(x),0(y)) | → | +#(x,y) | (49) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 1 |
[n(x1, x2, x3)] | = | 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | x1 + 11798 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | x2 + 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
+#(x,+(y,z)) | → | +#(+(x,y),z) | (87) |
+#(1(x),0(y)) | → | +#(x,y) | (61) |
+#(0(x),1(y)) | → | +#(x,y) | (59) |
+#(x,+(y,z)) | → | +#(x,y) | (53) |
+#(1(x),1(y)) | → | +#(x,y) | (76) |
+#(0(x),0(y)) | → | +#(x,y) | (49) |
The dependency pairs are split into 1 component.
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 33955 |
[n(x1, x2, x3)] | = | 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 0 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 33954 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + x2 + 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(x,+(y,z)) | → | +(+(x,y),z) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
The dependency pairs are split into 0 components.
-#(1(x),0(y)) | → | -#(x,y) | (85) |
-#(1(x),1(y)) | → | -#(x,y) | (57) |
-#(0(x),1(y)) | → | -#(x,y) | (80) |
-#(0(x),0(y)) | → | -#(x,y) | (77) |
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (66) |
[val(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 2 |
[n(x1, x2, x3)] | = | 1 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[min#(x1)] | = | 0 |
[l(x1)] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[#] | = | 1 |
[wb(x1)] | = | 0 |
[true] | = | 0 |
[not#(x1)] | = | 0 |
[size#(x1)] | = | 0 |
[0(x1)] | = | x1 + 4 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[max(x1)] | = | 0 |
[max#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + x2 + 1 |
[bs(x1)] | = | 0 |
[bs#(x1)] | = | 0 |
[min(x1)] | = | 0 |
[val#(x1)] | = | 0 |
[-#(x1, x2)] | = | x1 + x2 + 0 |
[if#(x1, x2, x3)] | = | 0 |
[+(x1, x2)] | = | 35657 |
[wb#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[size(x1)] | = | 0 |
0(#) | → | # | (1) |
-(#,x) | → | # | (10) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(x,#) | → | x | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
-#(1(x),0(y)) | → | -#(x,y) | (85) |
-#(1(x),1(y)) | → | -#(x,y) | (57) |
-#(0(x),1(y)) | → | -#(x,y) | (80) |
-#(0(x),0(y)) | → | -#(x,y) | (77) |
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (66) |
The dependency pairs are split into 0 components.