The rewrite relation of the following TRS is considered.
le(0,Y) | → | true | (1) |
le(s(X),0) | → | false | (2) |
le(s(X),s(Y)) | → | le(X,Y) | (3) |
minus(0,Y) | → | 0 | (4) |
minus(s(X),Y) | → | ifMinus(le(s(X),Y),s(X),Y) | (5) |
ifMinus(true,s(X),Y) | → | 0 | (6) |
ifMinus(false,s(X),Y) | → | s(minus(X,Y)) | (7) |
quot(0,s(Y)) | → | 0 | (8) |
quot(s(X),s(Y)) | → | s(quot(minus(X,Y),s(Y))) | (9) |
quot#(s(X),s(Y)) | → | minus#(X,Y) | (10) |
le#(s(X),s(Y)) | → | le#(X,Y) | (11) |
minus#(s(X),Y) | → | le#(s(X),Y) | (12) |
ifMinus#(false,s(X),Y) | → | minus#(X,Y) | (13) |
quot#(s(X),s(Y)) | → | quot#(minus(X,Y),s(Y)) | (14) |
minus#(s(X),Y) | → | ifMinus#(le(s(X),Y),s(X),Y) | (15) |
The dependency pairs are split into 3 components.
quot#(s(X),s(Y)) | → | quot#(minus(X,Y),s(Y)) | (14) |
[le(x1, x2)] | = | x2 + 1 |
[s(x1)] | = | x1 + 2 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 1 |
[false] | = | 3 |
[true] | = | 2 |
[ifMinus(x1, x2, x3)] | = | x2 + 1 |
[0] | = | 1 |
[quot(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[quot#(x1, x2)] | = | x1 + 0 |
[ifMinus#(x1, x2, x3)] | = | 0 |
minus(0,Y) | → | 0 | (4) |
minus(s(X),Y) | → | ifMinus(le(s(X),Y),s(X),Y) | (5) |
ifMinus(false,s(X),Y) | → | s(minus(X,Y)) | (7) |
ifMinus(true,s(X),Y) | → | 0 | (6) |
quot#(s(X),s(Y)) | → | quot#(minus(X,Y),s(Y)) | (14) |
The dependency pairs are split into 0 components.
minus#(s(X),Y) | → | ifMinus#(le(s(X),Y),s(X),Y) | (15) |
ifMinus#(false,s(X),Y) | → | minus#(X,Y) | (13) |
[le(x1, x2)] | = | 1 |
[s(x1)] | = | x1 + 2 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 1 |
[false] | = | 1 |
[true] | = | 1 |
[ifMinus(x1, x2, x3)] | = | x2 + 1 |
[0] | = | 0 |
[quot(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | x1 + x2 + 2 |
[quot#(x1, x2)] | = | x1 + 0 |
[ifMinus#(x1, x2, x3)] | = | x1 + x2 + x3 + 0 |
minus(0,Y) | → | 0 | (4) |
le(0,Y) | → | true | (1) |
le(s(X),s(Y)) | → | le(X,Y) | (3) |
minus(s(X),Y) | → | ifMinus(le(s(X),Y),s(X),Y) | (5) |
ifMinus(false,s(X),Y) | → | s(minus(X,Y)) | (7) |
ifMinus(true,s(X),Y) | → | 0 | (6) |
le(s(X),0) | → | false | (2) |
minus#(s(X),Y) | → | ifMinus#(le(s(X),Y),s(X),Y) | (15) |
ifMinus#(false,s(X),Y) | → | minus#(X,Y) | (13) |
The dependency pairs are split into 0 components.
le#(s(X),s(Y)) | → | le#(X,Y) | (11) |
[le(x1, x2)] | = | 1 |
[s(x1)] | = | x1 + 1 |
[le#(x1, x2)] | = | x1 + x2 + 0 |
[minus(x1, x2)] | = | x1 + 1 |
[false] | = | 1 |
[true] | = | 1 |
[ifMinus(x1, x2, x3)] | = | x2 + 1 |
[0] | = | 0 |
[quot(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 2 |
[quot#(x1, x2)] | = | x1 + 0 |
[ifMinus#(x1, x2, x3)] | = | x1 + 0 |
minus(0,Y) | → | 0 | (4) |
le(0,Y) | → | true | (1) |
le(s(X),s(Y)) | → | le(X,Y) | (3) |
minus(s(X),Y) | → | ifMinus(le(s(X),Y),s(X),Y) | (5) |
ifMinus(false,s(X),Y) | → | s(minus(X,Y)) | (7) |
ifMinus(true,s(X),Y) | → | 0 | (6) |
le(s(X),0) | → | false | (2) |
le#(s(X),s(Y)) | → | le#(X,Y) | (11) |
The dependency pairs are split into 0 components.