The rewrite relation of the following TRS is considered.
f(a) | → | f(c(a)) | (1) |
f(c(X)) | → | X | (2) |
f(c(a)) | → | f(d(b)) | (3) |
f(a) | → | f(d(a)) | (4) |
f(d(X)) | → | X | (5) |
f(c(b)) | → | f(d(a)) | (6) |
e(g(X)) | → | e(X) | (7) |
e#(g(X)) | → | e#(X) | (8) |
f#(a) | → | f#(d(a)) | (9) |
f#(c(a)) | → | f#(d(b)) | (10) |
f#(c(b)) | → | f#(d(a)) | (11) |
f#(a) | → | f#(c(a)) | (12) |
The dependency pairs are split into 1 component.
e#(g(X)) | → | e#(X) | (8) |
[a] | = | 0 |
[d(x1)] | = | 0 |
[b] | = | 0 |
[e#(x1)] | = | x1 + 0 |
[c(x1)] | = | 0 |
[f(x1)] | = | 0 |
[f#(x1)] | = | 0 |
[e(x1)] | = | 0 |
[g(x1)] | = | x1 + 1 |
e#(g(X)) | → | e#(X) | (8) |
The dependency pairs are split into 0 components.