The rewrite relation of the following TRS is considered.
dx(X) | → | one | (1) |
dx(a) | → | zero | (2) |
dx(plus(ALPHA,BETA)) | → | plus(dx(ALPHA),dx(BETA)) | (3) |
dx(times(ALPHA,BETA)) | → | plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) | (4) |
dx(minus(ALPHA,BETA)) | → | minus(dx(ALPHA),dx(BETA)) | (5) |
dx(neg(ALPHA)) | → | neg(dx(ALPHA)) | (6) |
dx(div(ALPHA,BETA)) | → | minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) | (7) |
dx(ln(ALPHA)) | → | div(dx(ALPHA),ALPHA) | (8) |
dx(exp(ALPHA,BETA)) | → | plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) | (9) |
dx#(exp(ALPHA,BETA)) | → | dx#(ALPHA) | (10) |
dx#(minus(ALPHA,BETA)) | → | dx#(ALPHA) | (11) |
dx#(plus(ALPHA,BETA)) | → | dx#(BETA) | (12) |
dx#(times(ALPHA,BETA)) | → | dx#(ALPHA) | (13) |
dx#(times(ALPHA,BETA)) | → | dx#(BETA) | (14) |
dx#(minus(ALPHA,BETA)) | → | dx#(BETA) | (15) |
dx#(ln(ALPHA)) | → | dx#(ALPHA) | (16) |
dx#(div(ALPHA,BETA)) | → | dx#(BETA) | (17) |
dx#(exp(ALPHA,BETA)) | → | dx#(BETA) | (18) |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | (19) |
dx#(plus(ALPHA,BETA)) | → | dx#(ALPHA) | (20) |
dx#(div(ALPHA,BETA)) | → | dx#(ALPHA) | (21) |
The dependency pairs are split into 1 component.
dx#(div(ALPHA,BETA)) | → | dx#(ALPHA) | (21) |
dx#(times(ALPHA,BETA)) | → | dx#(BETA) | (14) |
dx#(plus(ALPHA,BETA)) | → | dx#(ALPHA) | (20) |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | (19) |
dx#(exp(ALPHA,BETA)) | → | dx#(BETA) | (18) |
dx#(times(ALPHA,BETA)) | → | dx#(ALPHA) | (13) |
dx#(plus(ALPHA,BETA)) | → | dx#(BETA) | (12) |
dx#(minus(ALPHA,BETA)) | → | dx#(ALPHA) | (11) |
dx#(div(ALPHA,BETA)) | → | dx#(BETA) | (17) |
dx#(ln(ALPHA)) | → | dx#(ALPHA) | (16) |
dx#(minus(ALPHA,BETA)) | → | dx#(BETA) | (15) |
dx#(exp(ALPHA,BETA)) | → | dx#(ALPHA) | (10) |
[zero] | = | 0 |
[a] | = | 0 |
[ln(x1)] | = | x1 + 1 |
[minus(x1, x2)] | = | x1 + x2 + 1 |
[dx#(x1)] | = | x1 + 0 |
[div(x1, x2)] | = | x1 + x2 + 1 |
[two] | = | 0 |
[dx(x1)] | = | 0 |
[one] | = | 0 |
[times(x1, x2)] | = | x1 + x2 + 1 |
[neg(x1)] | = | x1 + 1 |
[plus(x1, x2)] | = | x1 + x2 + 1 |
[exp(x1, x2)] | = | x1 + x2 + 1 |
dx#(div(ALPHA,BETA)) | → | dx#(ALPHA) | (21) |
dx#(times(ALPHA,BETA)) | → | dx#(BETA) | (14) |
dx#(plus(ALPHA,BETA)) | → | dx#(ALPHA) | (20) |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | (19) |
dx#(exp(ALPHA,BETA)) | → | dx#(BETA) | (18) |
dx#(times(ALPHA,BETA)) | → | dx#(ALPHA) | (13) |
dx#(plus(ALPHA,BETA)) | → | dx#(BETA) | (12) |
dx#(minus(ALPHA,BETA)) | → | dx#(ALPHA) | (11) |
dx#(div(ALPHA,BETA)) | → | dx#(BETA) | (17) |
dx#(ln(ALPHA)) | → | dx#(ALPHA) | (16) |
dx#(minus(ALPHA,BETA)) | → | dx#(BETA) | (15) |
dx#(exp(ALPHA,BETA)) | → | dx#(ALPHA) | (10) |
The dependency pairs are split into 0 components.