Certification Problem

Input (TPDB TRS_Standard/SK90/4.02)

The rewrite relation of the following TRS is considered.

*(x,1) x (1)
*(1,y) y (2)
*(i(x),x) 1 (3)
*(x,i(x)) 1 (4)
*(x,*(y,z)) *(*(x,y),z) (5)
i(1) 1 (6)
*(*(x,y),i(y)) x (7)
*(*(x,i(y)),y) x (8)
i(i(x)) x (9)
i(*(x,y)) *(i(y),i(x)) (10)
k(x,1) 1 (11)
k(x,x) 1 (12)
*(k(x,y),k(y,x)) 1 (13)
*(*(i(x),k(y,z)),x) k(*(*(i(x),y),x),*(*(i(x),z),x)) (14)
k(*(x,i(y)),*(y,i(x))) 1 (15)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by NaTT @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
*#(*(i(x),k(y,z)),x) *#(*(i(x),y),x) (16)
i#(*(x,y)) *#(i(y),i(x)) (17)
*#(x,*(y,z)) *#(*(x,y),z) (18)
i#(*(x,y)) i#(y) (19)
*#(x,*(y,z)) *#(x,y) (20)
*#(*(i(x),k(y,z)),x) *#(i(x),z) (21)
*#(*(i(x),k(y,z)),x) *#(i(x),y) (22)
*#(*(i(x),k(y,z)),x) k#(*(*(i(x),y),x),*(*(i(x),z),x)) (23)
i#(*(x,y)) i#(x) (24)
*#(*(i(x),k(y,z)),x) *#(*(i(x),z),x) (25)

1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.