The rewrite relation of the following TRS is considered.
-(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -(-(x,y),-(x,y)) | (1) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(-(x,y),-(x,y)) | (3) |
The dependency pairs are split into 1 component.
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(-(x,y),-(x,y)) | (3) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
[-(x1, x2)] | = | x1 + x2 + 1 |
[neg(x1)] | = | x1 + 36466 |
[-#(x1, x2)] | = | x1 + x2 + 0 |
-(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -(-(x,y),-(x,y)) | (1) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(-(x,y),-(x,y)) | (3) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
-#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
The dependency pairs are split into 0 components.