The rewrite relation of the following TRS is considered.
| -(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -(-(x,y),-(x,y)) | (1) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(-(x,y),-(x,y)) | (3) |
The dependency pairs are split into 1 component.
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(-(x,y),-(x,y)) | (3) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
| [-(x1, x2)] | = | x1 + x2 + 1 |
| [neg(x1)] | = | x1 + 36466 |
| [-#(x1, x2)] | = | x1 + x2 + 0 |
| -(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -(-(x,y),-(x,y)) | (1) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(-(x,y),-(x,y)) | (3) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
| -#(-(neg(x),neg(x)),-(neg(y),neg(y))) | → | -#(x,y) | (2) |
The dependency pairs are split into 0 components.