The rewrite relation of the following TRS is considered.
rev(nil) | → | nil | (1) |
rev(++(x,y)) | → | ++(rev1(x,y),rev2(x,y)) | (2) |
rev1(x,nil) | → | x | (3) |
rev1(x,++(y,z)) | → | rev1(y,z) | (4) |
rev2(x,nil) | → | nil | (5) |
rev2(x,++(y,z)) | → | rev(++(x,rev(rev2(y,z)))) | (6) |
rev#(++(x,y)) | → | rev2#(x,y) | (7) |
rev1#(x,++(y,z)) | → | rev1#(y,z) | (8) |
rev2#(x,++(y,z)) | → | rev2#(y,z) | (9) |
rev2#(x,++(y,z)) | → | rev#(++(x,rev(rev2(y,z)))) | (10) |
rev#(++(x,y)) | → | rev1#(x,y) | (11) |
rev2#(x,++(y,z)) | → | rev#(rev2(y,z)) | (12) |
The dependency pairs are split into 2 components.
rev2#(x,++(y,z)) | → | rev#(rev2(y,z)) | (12) |
rev2#(x,++(y,z)) | → | rev#(++(x,rev(rev2(y,z)))) | (10) |
rev2#(x,++(y,z)) | → | rev2#(y,z) | (9) |
rev#(++(x,y)) | → | rev2#(x,y) | (7) |
[rev#(x1)] | = | x1 + 0 |
[rev1(x1, x2)] | = | x2 + 1 |
[++(x1, x2)] | = | x2 + 11799 |
[rev1#(x1, x2)] | = | 0 |
[rev2#(x1, x2)] | = | x2 + 11798 |
[nil] | = | 1 |
[rev(x1)] | = | x1 + 0 |
[rev2(x1, x2)] | = | x2 + 0 |
rev(nil) | → | nil | (1) |
rev2(x,nil) | → | nil | (5) |
rev2(x,++(y,z)) | → | rev(++(x,rev(rev2(y,z)))) | (6) |
rev(++(x,y)) | → | ++(rev1(x,y),rev2(x,y)) | (2) |
rev2#(x,++(y,z)) | → | rev#(rev2(y,z)) | (12) |
rev2#(x,++(y,z)) | → | rev#(++(x,rev(rev2(y,z)))) | (10) |
rev2#(x,++(y,z)) | → | rev2#(y,z) | (9) |
rev#(++(x,y)) | → | rev2#(x,y) | (7) |
The dependency pairs are split into 0 components.
rev1#(x,++(y,z)) | → | rev1#(y,z) | (8) |
[rev#(x1)] | = | x1 + 0 |
[rev1(x1, x2)] | = | x2 + 1 |
[++(x1, x2)] | = | x2 + 32286 |
[rev1#(x1, x2)] | = | x2 + 0 |
[rev2#(x1, x2)] | = | 11798 |
[nil] | = | 1 |
[rev(x1)] | = | x1 + 0 |
[rev2(x1, x2)] | = | x2 + 0 |
rev(nil) | → | nil | (1) |
rev2(x,nil) | → | nil | (5) |
rev2(x,++(y,z)) | → | rev(++(x,rev(rev2(y,z)))) | (6) |
rev(++(x,y)) | → | ++(rev1(x,y),rev2(x,y)) | (2) |
rev1#(x,++(y,z)) | → | rev1#(y,z) | (8) |
The dependency pairs are split into 0 components.