The rewrite relation of the following TRS is considered.
f(b(a,z)) | → | z | (1) |
b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
f(f(f(c(z,x,a)))) | → | b(f(x),z) | (3) |
b#(y,b(a,z)) | → | f#(c(y,y,a)) | (4) |
f#(f(f(c(z,x,a)))) | → | f#(x) | (5) |
f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (6) |
b#(y,b(a,z)) | → | b#(f(z),a) | (7) |
b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
b#(y,b(a,z)) | → | f#(z) | (9) |
The dependency pairs are split into 1 component.
b#(y,b(a,z)) | → | f#(z) | (9) |
b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
f#(f(f(c(z,x,a)))) | → | f#(x) | (5) |
f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (6) |
[a] | = | 0 |
[b(x1, x2)] | = | x2 + 28105 |
[c(x1, x2, x3)] | = | x1 + x2 + 1 |
[f(x1)] | = | x1 + 1 |
[f#(x1)] | = | x1 + 0 |
[b#(x1, x2)] | = | x2 + 2 |
b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
b#(y,b(a,z)) | → | f#(z) | (9) |
f#(f(f(c(z,x,a)))) | → | f#(x) | (5) |
f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (6) |
The dependency pairs are split into 1 component.
b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
[a] | = |
|
|||||||||||||||||||
[b(x1, x2)] | = |
|
|||||||||||||||||||
[c(x1, x2, x3)] | = |
|
|||||||||||||||||||
[f(x1)] | = |
|
|||||||||||||||||||
[f#(x1)] | = |
|
|||||||||||||||||||
[b#(x1, x2)] | = |
|
f(b(a,z)) | → | z | (1) |
f(f(f(c(z,x,a)))) | → | b(f(x),z) | (3) |
b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
The dependency pairs are split into 0 components.