The rewrite relation of the following TRS is considered.
D(t) | → | s(h) | (1) |
D(constant) | → | h | (2) |
D(b(x,y)) | → | b(D(x),D(y)) | (3) |
D(c(x,y)) | → | b(c(y,D(x)),c(x,D(y))) | (4) |
D(m(x,y)) | → | m(D(x),D(y)) | (5) |
D(opp(x)) | → | opp(D(x)) | (6) |
D(div(x,y)) | → | m(div(D(x),y),div(c(x,D(y)),pow(y,2))) | (7) |
D(ln(x)) | → | div(D(x),x) | (8) |
D(pow(x,y)) | → | b(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) | (9) |
b(h,x) | → | x | (10) |
b(x,h) | → | x | (11) |
b(s(x),s(y)) | → | s(s(b(x,y))) | (12) |
b(b(x,y),z) | → | b(x,b(y,z)) | (13) |
b#(b(x,y),z) | → | b#(x,b(y,z)) | (14) |
D#(pow(x,y)) | → | D#(y) | (15) |
D#(b(x,y)) | → | D#(x) | (16) |
D#(div(x,y)) | → | D#(y) | (17) |
D#(m(x,y)) | → | D#(y) | (18) |
D#(b(x,y)) | → | b#(D(x),D(y)) | (19) |
D#(b(x,y)) | → | D#(y) | (20) |
b#(s(x),s(y)) | → | b#(x,y) | (21) |
D#(m(x,y)) | → | D#(x) | (22) |
D#(pow(x,y)) | → | D#(x) | (23) |
D#(c(x,y)) | → | D#(x) | (24) |
D#(c(x,y)) | → | b#(c(y,D(x)),c(x,D(y))) | (25) |
b#(b(x,y),z) | → | b#(y,z) | (26) |
D#(opp(x)) | → | D#(x) | (27) |
D#(div(x,y)) | → | D#(x) | (28) |
D#(ln(x)) | → | D#(x) | (29) |
D#(pow(x,y)) | → | b#(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) | (30) |
D#(c(x,y)) | → | D#(y) | (31) |
The dependency pairs are split into 2 components.
D#(c(x,y)) | → | D#(y) | (31) |
D#(b(x,y)) | → | D#(y) | (20) |
D#(ln(x)) | → | D#(x) | (29) |
D#(div(x,y)) | → | D#(x) | (28) |
D#(opp(x)) | → | D#(x) | (27) |
D#(m(x,y)) | → | D#(y) | (18) |
D#(div(x,y)) | → | D#(y) | (17) |
D#(b(x,y)) | → | D#(x) | (16) |
D#(c(x,y)) | → | D#(x) | (24) |
D#(pow(x,y)) | → | D#(y) | (15) |
D#(pow(x,y)) | → | D#(x) | (23) |
D#(m(x,y)) | → | D#(x) | (22) |
[h] | = | 0 |
[1] | = | 0 |
[ln(x1)] | = | x1 + 1 |
[s(x1)] | = | 0 |
[constant] | = | 0 |
[b(x1, x2)] | = | x1 + x2 + 1 |
[pow(x1, x2)] | = | x1 + x2 + 1 |
[t] | = | 0 |
[div(x1, x2)] | = | x1 + x2 + 1 |
[c(x1, x2)] | = | x1 + x2 + 1 |
[D(x1)] | = | 0 |
[D#(x1)] | = | x1 + 0 |
[opp(x1)] | = | x1 + 1 |
[2] | = | 0 |
[b#(x1, x2)] | = | 0 |
[m(x1, x2)] | = | x1 + x2 + 1 |
D#(c(x,y)) | → | D#(y) | (31) |
D#(b(x,y)) | → | D#(y) | (20) |
D#(ln(x)) | → | D#(x) | (29) |
D#(div(x,y)) | → | D#(x) | (28) |
D#(opp(x)) | → | D#(x) | (27) |
D#(m(x,y)) | → | D#(y) | (18) |
D#(div(x,y)) | → | D#(y) | (17) |
D#(b(x,y)) | → | D#(x) | (16) |
D#(c(x,y)) | → | D#(x) | (24) |
D#(pow(x,y)) | → | D#(y) | (15) |
D#(pow(x,y)) | → | D#(x) | (23) |
D#(m(x,y)) | → | D#(x) | (22) |
The dependency pairs are split into 0 components.
b#(b(x,y),z) | → | b#(y,z) | (26) |
b#(s(x),s(y)) | → | b#(x,y) | (21) |
b#(b(x,y),z) | → | b#(x,b(y,z)) | (14) |
[h] | = | 1 |
[1] | = | 0 |
[ln(x1)] | = | 1 |
[s(x1)] | = | x1 + 1 |
[constant] | = | 0 |
[b(x1, x2)] | = | x1 + x2 + 1 |
[pow(x1, x2)] | = | 1 |
[t] | = | 0 |
[div(x1, x2)] | = | 1 |
[c(x1, x2)] | = | 1 |
[D(x1)] | = | 0 |
[D#(x1)] | = | 0 |
[opp(x1)] | = | 1 |
[2] | = | 0 |
[b#(x1, x2)] | = | x1 + 0 |
[m(x1, x2)] | = | 1 |
b#(b(x,y),z) | → | b#(y,z) | (26) |
b#(s(x),s(y)) | → | b#(x,y) | (21) |
b#(b(x,y),z) | → | b#(x,b(y,z)) | (14) |
The dependency pairs are split into 0 components.