The rewrite relation of the following TRS is considered.
f(x,y,w,w,a) | → | g1(x,x,y,w) | (1) |
f(x,y,w,a,a) | → | g1(y,x,x,w) | (2) |
f(x,y,a,a,w) | → | g2(x,y,y,w) | (3) |
f(x,y,a,w,w) | → | g2(y,y,x,w) | (4) |
g1(x,x,y,a) | → | h(x,y) | (5) |
g1(y,x,x,a) | → | h(x,y) | (6) |
g2(x,y,y,a) | → | h(x,y) | (7) |
g2(y,y,x,a) | → | h(x,y) | (8) |
h(x,x) | → | x | (9) |
g1#(y,x,x,a) | → | h#(x,y) | (10) |
f#(x,y,w,w,a) | → | g1#(x,x,y,w) | (11) |
g2#(y,y,x,a) | → | h#(x,y) | (12) |
f#(x,y,a,a,w) | → | g2#(x,y,y,w) | (13) |
g2#(x,y,y,a) | → | h#(x,y) | (14) |
f#(x,y,w,a,a) | → | g1#(y,x,x,w) | (15) |
f#(x,y,a,w,w) | → | g2#(y,y,x,w) | (16) |
g1#(x,x,y,a) | → | h#(x,y) | (17) |
The dependency pairs are split into 0 components.