The rewrite relation of the following TRS is considered.
f(x,f(a,y)) | → | f(a,f(f(f(a,x),h(a)),y)) | (1) |
f#(x,f(a,y)) | → | f#(f(f(a,x),h(a)),y) | (2) |
f#(x,f(a,y)) | → | f#(f(a,x),h(a)) | (3) |
f#(x,f(a,y)) | → | f#(a,f(f(f(a,x),h(a)),y)) | (4) |
f#(x,f(a,y)) | → | f#(a,x) | (5) |
The dependency pairs are split into 1 component.
f#(x,f(a,y)) | → | f#(a,x) | (5) |
f#(x,f(a,y)) | → | f#(a,f(f(f(a,x),h(a)),y)) | (4) |
f#(x,f(a,y)) | → | f#(f(f(a,x),h(a)),y) | (2) |
[a] | = | 0 |
[h(x1)] | = | 0 |
[f(x1, x2)] | = | x2 + 1 |
[f#(x1, x2)] | = | x1 + x2 + 0 |
f(x,f(a,y)) | → | f(a,f(f(f(a,x),h(a)),y)) | (1) |
f#(x,f(a,y)) | → | f#(a,x) | (5) |
The dependency pairs are split into 1 component.
f#(x,f(a,y)) | → | f#(f(f(a,x),h(a)),y) | (2) |
f#(x,f(a,y)) | → | f#(a,f(f(f(a,x),h(a)),y)) | (4) |
[a] | = | 0 |
[h(x1)] | = | 1 |
[f(x1, x2)] | = | x2 + 1 |
[f#(x1, x2)] | = | x2 + 0 |
f(x,f(a,y)) | → | f(a,f(f(f(a,x),h(a)),y)) | (1) |
f#(x,f(a,y)) | → | f#(f(f(a,x),h(a)),y) | (2) |
The dependency pairs are split into 1 component.
f#(x,f(a,y)) | → | f#(a,f(f(f(a,x),h(a)),y)) | (4) |
[a] | = |
|
|||||||||||||||||||
[h(x1)] | = |
|
|||||||||||||||||||
[f(x1, x2)] | = |
|
|||||||||||||||||||
[f#(x1, x2)] | = |
|
f(x,f(a,y)) | → | f(a,f(f(f(a,x),h(a)),y)) | (1) |
f#(x,f(a,y)) | → | f#(a,f(f(f(a,x),h(a)),y)) | (4) |
The dependency pairs are split into 0 components.