The rewrite relation of the following TRS is considered.
a(lambda(x),y) | → | lambda(a(x,p(1,a(y,t)))) | (1) |
a(p(x,y),z) | → | p(a(x,z),a(y,z)) | (2) |
a(a(x,y),z) | → | a(x,a(y,z)) | (3) |
a(id,x) | → | x | (4) |
a(1,id) | → | 1 | (5) |
a(t,id) | → | t | (6) |
a(1,p(x,y)) | → | x | (7) |
a(t,p(x,y)) | → | y | (8) |
a#(p(x,y),z) | → | a#(y,z) | (9) |
a#(lambda(x),y) | → | a#(y,t) | (10) |
a#(lambda(x),y) | → | a#(x,p(1,a(y,t))) | (11) |
a#(a(x,y),z) | → | a#(x,a(y,z)) | (12) |
a#(p(x,y),z) | → | a#(x,z) | (13) |
a#(a(x,y),z) | → | a#(y,z) | (14) |
The dependency pairs are split into 1 component.
a#(a(x,y),z) | → | a#(y,z) | (14) |
a#(p(x,y),z) | → | a#(x,z) | (13) |
a#(a(x,y),z) | → | a#(x,a(y,z)) | (12) |
a#(lambda(x),y) | → | a#(y,t) | (10) |
a#(lambda(x),y) | → | a#(x,p(1,a(y,t))) | (11) |
a#(p(x,y),z) | → | a#(y,z) | (9) |
[a(x1, x2)] | = | x1 + x2 + 0 |
[1] | = | 0 |
[t] | = | 0 |
[lambda(x1)] | = | x1 + 1 |
[p(x1, x2)] | = | max(x1 + 0, x2 + 0, 0) |
[id] | = | 11293 |
[a#(x1, x2)] | = | x1 + x2 + 0 |
a(id,x) | → | x | (4) |
a(t,p(x,y)) | → | y | (8) |
a(lambda(x),y) | → | lambda(a(x,p(1,a(y,t)))) | (1) |
a(a(x,y),z) | → | a(x,a(y,z)) | (3) |
a(1,id) | → | 1 | (5) |
a(1,p(x,y)) | → | x | (7) |
a(t,id) | → | t | (6) |
a(p(x,y),z) | → | p(a(x,z),a(y,z)) | (2) |
a#(lambda(x),y) | → | a#(y,t) | (10) |
a#(lambda(x),y) | → | a#(x,p(1,a(y,t))) | (11) |
The dependency pairs are split into 1 component.
a#(a(x,y),z) | → | a#(y,z) | (14) |
a#(a(x,y),z) | → | a#(x,a(y,z)) | (12) |
a#(p(x,y),z) | → | a#(y,z) | (9) |
a#(p(x,y),z) | → | a#(x,z) | (13) |
[a(x1, x2)] | = | x1 + x2 + 1 |
[1] | = | 1 |
[t] | = | 1 |
[lambda(x1)] | = | x1 + 18816 |
[p(x1, x2)] | = | x1 + x2 + 1 |
[id] | = | 62898 |
[a#(x1, x2)] | = | x1 + 0 |
a#(a(x,y),z) | → | a#(y,z) | (14) |
a#(a(x,y),z) | → | a#(x,a(y,z)) | (12) |
a#(p(x,y),z) | → | a#(y,z) | (9) |
a#(p(x,y),z) | → | a#(x,z) | (13) |
The dependency pairs are split into 0 components.