The rewrite relation of the following TRS is considered.
plus(s(s(x)),y) | → | s(plus(x,s(y))) | (1) |
plus(x,s(s(y))) | → | s(plus(s(x),y)) | (2) |
plus(s(0),y) | → | s(y) | (3) |
plus(0,y) | → | y | (4) |
ack(0,y) | → | s(y) | (5) |
ack(s(x),0) | → | ack(x,s(0)) | (6) |
ack(s(x),s(y)) | → | ack(x,plus(y,ack(s(x),y))) | (7) |
plus#(s(s(x)),y) | → | plus#(x,s(y)) | (8) |
plus#(x,s(s(y))) | → | plus#(s(x),y) | (9) |
ack#(s(x),0) | → | ack#(x,s(0)) | (10) |
ack#(s(x),s(y)) | → | ack#(s(x),y) | (11) |
ack#(s(x),s(y)) | → | plus#(y,ack(s(x),y)) | (12) |
ack#(s(x),s(y)) | → | ack#(x,plus(y,ack(s(x),y))) | (13) |
The dependency pairs are split into 2 components.
ack#(s(x),0) | → | ack#(x,s(0)) | (10) |
ack#(s(x),s(y)) | → | ack#(x,plus(y,ack(s(x),y))) | (13) |
ack#(s(x),s(y)) | → | ack#(s(x),y) | (11) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ack#(s(x),0) | → | ack#(x,s(0)) | (10) |
1 | > | 1 | |
ack#(s(x),s(y)) | → | ack#(x,plus(y,ack(s(x),y))) | (13) |
1 | > | 1 | |
ack#(s(x),s(y)) | → | ack#(s(x),y) | (11) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
plus#(x,s(s(y))) | → | plus#(s(x),y) | (9) |
plus#(s(s(x)),y) | → | plus#(x,s(y)) | (8) |
[plus#(x1, x2)] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[s(x1)] | = |
|
plus#(x,s(s(y))) | → | plus#(s(x),y) | (9) |
plus#(s(s(x)),y) | → | plus#(x,s(y)) | (8) |
There are no pairs anymore.