The rewrite relation of the following TRS is considered.
| r(xs,ys,zs,nil) | → | xs | (1) |
| r(xs,nil,zs,cons(w,ws)) | → | r(xs,xs,cons(succ(zero),zs),ws) | (2) |
| r(xs,cons(y,ys),nil,cons(w,ws)) | → | r(xs,xs,cons(succ(zero),nil),ws) | (3) |
| r(xs,cons(y,ys),cons(z,zs),cons(w,ws)) | → | r(ys,cons(y,ys),zs,cons(succ(zero),cons(w,ws))) | (4) |
| r#(xs,nil,zs,cons(w,ws)) | → | r#(xs,xs,cons(succ(zero),zs),ws) | (5) |
| r#(xs,cons(y,ys),nil,cons(w,ws)) | → | r#(xs,xs,cons(succ(zero),nil),ws) | (6) |
| r#(xs,cons(y,ys),cons(z,zs),cons(w,ws)) | → | r#(ys,cons(y,ys),zs,cons(succ(zero),cons(w,ws))) | (7) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| r#(xs,nil,zs,cons(w,ws)) | → | r#(xs,xs,cons(succ(zero),zs),ws) | (5) |
| 4 | > | 4 | |
| 1 | ≥ | 2 | |
| 1 | ≥ | 1 | |
| r#(xs,cons(y,ys),nil,cons(w,ws)) | → | r#(xs,xs,cons(succ(zero),nil),ws) | (6) |
| 4 | > | 4 | |
| 1 | ≥ | 2 | |
| 1 | ≥ | 1 | |
| r#(xs,cons(y,ys),cons(z,zs),cons(w,ws)) | → | r#(ys,cons(y,ys),zs,cons(succ(zero),cons(w,ws))) | (7) |
| 3 | > | 3 | |
| 2 | ≥ | 2 | |
| 2 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.