The rewrite relation of the following TRS is considered.
h(c(x,y),c(s(z),z),t(w)) | → | h(z,c(y,x),t(t(c(x,c(y,t(w)))))) | (1) |
h(x,c(y,z),t(w)) | → | h(c(s(y),x),z,t(c(t(w),w))) | (2) |
h(c(s(x),c(s(0),y)),z,t(x)) | → | h(y,c(s(0),c(x,z)),t(t(c(x,s(x))))) | (3) |
t(t(x)) | → | t(c(t(x),x)) | (4) |
t(x) | → | x | (5) |
t(x) | → | c(0,c(0,c(0,c(0,c(0,x))))) | (6) |
h#(c(x,y),c(s(z),z),t(w)) | → | t#(c(x,c(y,t(w)))) | (7) |
h#(c(x,y),c(s(z),z),t(w)) | → | t#(t(c(x,c(y,t(w))))) | (8) |
h#(c(x,y),c(s(z),z),t(w)) | → | h#(z,c(y,x),t(t(c(x,c(y,t(w)))))) | (9) |
h#(x,c(y,z),t(w)) | → | t#(c(t(w),w)) | (10) |
h#(x,c(y,z),t(w)) | → | h#(c(s(y),x),z,t(c(t(w),w))) | (11) |
h#(c(s(x),c(s(0),y)),z,t(x)) | → | t#(c(x,s(x))) | (12) |
h#(c(s(x),c(s(0),y)),z,t(x)) | → | t#(t(c(x,s(x)))) | (13) |
h#(c(s(x),c(s(0),y)),z,t(x)) | → | h#(y,c(s(0),c(x,z)),t(t(c(x,s(x))))) | (14) |
t#(t(x)) | → | t#(c(t(x),x)) | (15) |
The dependency pairs are split into 1 component.
h#(c(s(x),c(s(0),y)),z,t(x)) | → | h#(y,c(s(0),c(x,z)),t(t(c(x,s(x))))) | (14) |
h#(x,c(y,z),t(w)) | → | h#(c(s(y),x),z,t(c(t(w),w))) | (11) |
h#(c(x,y),c(s(z),z),t(w)) | → | h#(z,c(y,x),t(t(c(x,c(y,t(w)))))) | (9) |
π(h#) | = | { 1, 1, 2, 2 } |
π(s) | = | { 1 } |
π(c) | = | { 1, 2 } |
h#(c(x,y),c(s(z),z),t(w)) | → | h#(z,c(y,x),t(t(c(x,c(y,t(w)))))) | (9) |
[0] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
[s(x1)] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
[h#(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
[c(x1, x2)] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
[t(x1)] | = |
|
h#(c(s(x),c(s(0),y)),z,t(x)) | → | h#(y,c(s(0),c(x,z)),t(t(c(x,s(x))))) | (14) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
h#(x,c(y,z),t(w)) | → | h#(c(s(y),x),z,t(c(t(w),w))) | (11) |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.