Certification Problem

Input (TPDB TRS_Standard/AProVE_07/kabasci03)

The rewrite relation of the following TRS is considered.

h(c(x,y),c(s(z),z),t(w)) h(z,c(y,x),t(t(c(x,c(y,t(w)))))) (1)
h(x,c(y,z),t(w)) h(c(s(y),x),z,t(c(t(w),w))) (2)
h(c(s(x),c(s(0),y)),z,t(x)) h(y,c(s(0),c(x,z)),t(t(c(x,s(x))))) (3)
t(t(x)) t(c(t(x),x)) (4)
t(x) x (5)
t(x) c(0,c(0,c(0,c(0,c(0,x))))) (6)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
h#(c(x,y),c(s(z),z),t(w)) t#(c(x,c(y,t(w)))) (7)
h#(c(x,y),c(s(z),z),t(w)) t#(t(c(x,c(y,t(w))))) (8)
h#(c(x,y),c(s(z),z),t(w)) h#(z,c(y,x),t(t(c(x,c(y,t(w)))))) (9)
h#(x,c(y,z),t(w)) t#(c(t(w),w)) (10)
h#(x,c(y,z),t(w)) h#(c(s(y),x),z,t(c(t(w),w))) (11)
h#(c(s(x),c(s(0),y)),z,t(x)) t#(c(x,s(x))) (12)
h#(c(s(x),c(s(0),y)),z,t(x)) t#(t(c(x,s(x)))) (13)
h#(c(s(x),c(s(0),y)),z,t(x)) h#(y,c(s(0),c(x,z)),t(t(c(x,s(x))))) (14)
t#(t(x)) t#(c(t(x),x)) (15)

1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.