The rewrite relation of the following TRS is considered.
app(app(fmap,fnil),x) | → | nil | (1) |
app(app(fmap,app(app(fcons,f),t)),x) | → | app(app(cons,app(f,x)),app(app(fmap,t),x)) | (2) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(fmap,t) | (3) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(app(fmap,t),x) | (4) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(f,x) | (5) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(cons,app(f,x)) | (6) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(app(cons,app(f,x)),app(app(fmap,t),x)) | (7) |
The dependency pairs are split into 1 component.
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(app(fmap,t),x) | (4) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(f,x) | (5) |
prec(app#) | = | 0 | stat(app#) | = | lex | |
prec(fcons) | = | 0 | stat(fcons) | = | lex | |
prec(app) | = | 1 | stat(app) | = | lex | |
prec(fmap) | = | 0 | stat(fmap) | = | lex |
π(app#) | = | 1 |
π(fcons) | = | [] |
π(app) | = | [1,2] |
π(fmap) | = | [] |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(app(fmap,t),x) | (4) |
app#(app(fmap,app(app(fcons,f),t)),x) | → | app#(f,x) | (5) |
There are no pairs anymore.