The rewrite relation of the following TRS is considered.
cond(true,x) | → | cond(and(even(x),gr(x,0)),p(x)) | (1) |
and(x,false) | → | false | (2) |
and(false,x) | → | false | (3) |
and(true,true) | → | true | (4) |
even(0) | → | true | (5) |
even(s(0)) | → | false | (6) |
even(s(s(x))) | → | even(x) | (7) |
gr(0,x) | → | false | (8) |
gr(s(x),0) | → | true | (9) |
gr(s(x),s(y)) | → | gr(x,y) | (10) |
p(0) | → | 0 | (11) |
p(s(x)) | → | x | (12) |
cond#(true,x) | → | p#(x) | (13) |
cond#(true,x) | → | gr#(x,0) | (14) |
cond#(true,x) | → | even#(x) | (15) |
cond#(true,x) | → | and#(even(x),gr(x,0)) | (16) |
cond#(true,x) | → | cond#(and(even(x),gr(x,0)),p(x)) | (17) |
even#(s(s(x))) | → | even#(x) | (18) |
gr#(s(x),s(y)) | → | gr#(x,y) | (19) |
The dependency pairs are split into 2 components.
cond#(true,x) | → | cond#(and(even(x),gr(x,0)),p(x)) | (17) |
[gr(x1, x2)] | = | -2 · x1 + 0 · x2 + 0 |
[s(x1)] | = | 3 · x1 + 4 |
[0] | = | 0 |
[and(x1, x2)] | = | -∞ · x1 + 0 · x2 + 0 |
[cond#(x1, x2)] | = | 0 · x1 + 0 · x2 + 1 |
[true] | = | 2 |
[false] | = | 0 |
[p(x1)] | = | -3 · x1 + 0 |
[even(x1)] | = | -∞ · x1 + 0 |
p(0) | → | 0 | (11) |
p(s(x)) | → | x | (12) |
gr(0,x) | → | false | (8) |
gr(s(x),0) | → | true | (9) |
and(x,false) | → | false | (2) |
and(false,x) | → | false | (3) |
and(true,true) | → | true | (4) |
cond#(true,x) | → | cond#(and(even(x),gr(x,0)),p(x)) | (17) |
There are no pairs anymore.
even#(s(s(x))) | → | even#(x) | (18) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
even#(s(s(x))) | → | even#(x) | (18) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.