The rewrite relation of the following TRS is considered.
p(a(x0),p(b(x1),p(a(x2),x3))) | → | p(x2,p(a(a(x0)),p(b(x1),x3))) | (1) |
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(b(x1),x3) | (2) |
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(a(a(x0)),p(b(x1),x3)) | (3) |
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(x2,p(a(a(x0)),p(b(x1),x3))) | (4) |
The dependency pairs are split into 1 component.
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(a(a(x0)),p(b(x1),x3)) | (3) |
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(x2,p(a(a(x0)),p(b(x1),x3))) | (4) |
prec(p#) | = | 0 | stat(p#) | = | lex | |
prec(p) | = | 0 | stat(p) | = | lex | |
prec(b) | = | 0 | stat(b) | = | lex | |
prec(a) | = | 0 | stat(a) | = | lex |
π(p#) | = | 2 |
π(p) | = | [2] |
π(b) | = | 1 |
π(a) | = | 1 |
p(a(x0),p(b(x1),p(a(x2),x3))) | → | p(x2,p(a(a(x0)),p(b(x1),x3))) | (1) |
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(a(a(x0)),p(b(x1),x3)) | (3) |
[b(x1)] | = |
|
|||||||||||||||||||||
[p#(x1, x2)] | = |
|
|||||||||||||||||||||
[a(x1)] | = |
|
|||||||||||||||||||||
[p(x1, x2)] | = |
|
p(a(x0),p(b(x1),p(a(x2),x3))) | → | p(x2,p(a(a(x0)),p(b(x1),x3))) | (1) |
p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(x2,p(a(a(x0)),p(b(x1),x3))) | (4) |
There are no pairs anymore.