The rewrite relation of the following TRS is considered.
There are 108 ruless (increase limit for explicit display).
SUC#(NUMERAL(n)) | → | SUC#(n) | (109) |
SUC#(NUMERAL(n)) | → | NUMERAL#(SUC(n)) | (110) |
SUC#(BIT1(n)) | → | SUC#(n) | (111) |
SUC#(BIT1(n)) | → | BIT0#(SUC(n)) | (112) |
PRE#(NUMERAL(n)) | → | PRE#(n) | (113) |
PRE#(NUMERAL(n)) | → | NUMERAL#(PRE(n)) | (114) |
PRE#(BIT0(n)) | → | PRE#(n) | (115) |
PRE#(BIT0(n)) | → | eq#(n,0) | (116) |
PRE#(BIT1(n)) | → | BIT0#(n) | (117) |
plus#(NUMERAL(m),NUMERAL(n)) | → | plus#(m,n) | (118) |
plus#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(plus(m,n)) | (119) |
plus#(BIT0(m),BIT0(n)) | → | plus#(m,n) | (120) |
plus#(BIT0(m),BIT0(n)) | → | BIT0#(plus(m,n)) | (121) |
plus#(BIT0(m),BIT1(n)) | → | plus#(m,n) | (122) |
plus#(BIT1(m),BIT0(n)) | → | plus#(m,n) | (123) |
plus#(BIT1(m),BIT1(n)) | → | plus#(m,n) | (124) |
plus#(BIT1(m),BIT1(n)) | → | SUC#(plus(m,n)) | (125) |
plus#(BIT1(m),BIT1(n)) | → | BIT0#(SUC(plus(m,n))) | (126) |
mult#(NUMERAL(m),NUMERAL(n)) | → | mult#(m,n) | (127) |
mult#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(mult(m,n)) | (128) |
mult#(BIT0(m),BIT0(n)) | → | mult#(m,n) | (129) |
mult#(BIT0(m),BIT0(n)) | → | BIT0#(mult(m,n)) | (130) |
mult#(BIT0(m),BIT0(n)) | → | BIT0#(BIT0(mult(m,n))) | (131) |
mult#(BIT0(m),BIT1(n)) | → | mult#(m,n) | (132) |
mult#(BIT0(m),BIT1(n)) | → | BIT0#(mult(m,n)) | (133) |
mult#(BIT0(m),BIT1(n)) | → | BIT0#(BIT0(mult(m,n))) | (134) |
mult#(BIT0(m),BIT1(n)) | → | plus#(BIT0(m),BIT0(BIT0(mult(m,n)))) | (135) |
mult#(BIT1(m),BIT0(n)) | → | mult#(m,n) | (136) |
mult#(BIT1(m),BIT0(n)) | → | BIT0#(mult(m,n)) | (137) |
mult#(BIT1(m),BIT0(n)) | → | BIT0#(BIT0(mult(m,n))) | (138) |
mult#(BIT1(m),BIT0(n)) | → | plus#(BIT0(n),BIT0(BIT0(mult(m,n)))) | (139) |
mult#(BIT1(m),BIT1(n)) | → | mult#(m,n) | (140) |
mult#(BIT1(m),BIT1(n)) | → | BIT0#(mult(m,n)) | (141) |
mult#(BIT1(m),BIT1(n)) | → | BIT0#(BIT0(mult(m,n))) | (142) |
mult#(BIT1(m),BIT1(n)) | → | BIT0#(n) | (143) |
mult#(BIT1(m),BIT1(n)) | → | plus#(BIT1(m),BIT0(n)) | (144) |
mult#(BIT1(m),BIT1(n)) | → | plus#(plus(BIT1(m),BIT0(n)),BIT0(BIT0(mult(m,n)))) | (145) |
exp#(NUMERAL(m),NUMERAL(n)) | → | exp#(m,n) | (146) |
exp#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(exp(m,n)) | (147) |
exp#(0,BIT0(n)) | → | exp#(0,n) | (148) |
exp#(0,BIT0(n)) | → | mult#(exp(0,n),exp(0,n)) | (149) |
exp#(BIT0(m),BIT0(n)) | → | exp#(BIT0(m),n) | (150) |
exp#(BIT0(m),BIT0(n)) | → | mult#(exp(BIT0(m),n),exp(BIT0(m),n)) | (151) |
exp#(BIT1(m),BIT0(n)) | → | exp#(BIT1(m),n) | (152) |
exp#(BIT1(m),BIT0(n)) | → | mult#(exp(BIT1(m),n),exp(BIT1(m),n)) | (153) |
exp#(BIT0(m),BIT1(n)) | → | exp#(BIT0(m),n) | (154) |
exp#(BIT0(m),BIT1(n)) | → | mult#(BIT0(m),exp(BIT0(m),n)) | (155) |
exp#(BIT0(m),BIT1(n)) | → | mult#(mult(BIT0(m),exp(BIT0(m),n)),exp(BIT0(m),n)) | (156) |
exp#(BIT1(m),BIT1(n)) | → | exp#(BIT1(m),n) | (157) |
exp#(BIT1(m),BIT1(n)) | → | mult#(BIT1(m),exp(BIT1(m),n)) | (158) |
exp#(BIT1(m),BIT1(n)) | → | mult#(mult(BIT1(m),exp(BIT1(m),n)),exp(BIT1(m),n)) | (159) |
EVEN#(NUMERAL(n)) | → | EVEN#(n) | (160) |
ODD#(NUMERAL(n)) | → | ODD#(n) | (161) |
eq#(NUMERAL(m),NUMERAL(n)) | → | eq#(m,n) | (162) |
eq#(BIT0(n),0) | → | eq#(n,0) | (163) |
eq#(0,BIT0(n)) | → | eq#(0,n) | (164) |
eq#(BIT0(m),BIT0(n)) | → | eq#(m,n) | (165) |
eq#(BIT1(m),BIT1(n)) | → | eq#(m,n) | (166) |
le#(NUMERAL(m),NUMERAL(n)) | → | le#(m,n) | (167) |
le#(BIT0(n),0) | → | le#(n,0) | (168) |
le#(BIT0(m),BIT0(n)) | → | le#(m,n) | (169) |
le#(BIT0(m),BIT1(n)) | → | le#(m,n) | (170) |
le#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (171) |
le#(BIT1(m),BIT1(n)) | → | le#(m,n) | (172) |
lt#(NUMERAL(m),NUMERAL(n)) | → | lt#(m,n) | (173) |
lt#(0,BIT0(n)) | → | lt#(0,n) | (174) |
lt#(BIT0(m),BIT0(n)) | → | lt#(m,n) | (175) |
lt#(BIT0(m),BIT1(n)) | → | le#(m,n) | (176) |
lt#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (177) |
lt#(BIT1(m),BIT1(n)) | → | lt#(m,n) | (178) |
ge#(NUMERAL(n),NUMERAL(m)) | → | ge#(n,m) | (179) |
ge#(0,BIT0(n)) | → | ge#(0,n) | (180) |
ge#(BIT0(n),BIT0(m)) | → | ge#(n,m) | (181) |
ge#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (182) |
ge#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (183) |
ge#(BIT1(n),BIT1(m)) | → | ge#(n,m) | (184) |
gt#(NUMERAL(n),NUMERAL(m)) | → | gt#(n,m) | (185) |
gt#(BIT0(n),0) | → | gt#(n,0) | (186) |
gt#(BIT0(n),BIT0(m)) | → | gt#(n,m) | (187) |
gt#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (188) |
gt#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (189) |
gt#(BIT1(n),BIT1(m)) | → | gt#(n,m) | (190) |
minus#(NUMERAL(m),NUMERAL(n)) | → | minus#(m,n) | (191) |
minus#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(minus(m,n)) | (192) |
minus#(BIT0(m),BIT0(n)) | → | minus#(m,n) | (193) |
minus#(BIT0(m),BIT0(n)) | → | BIT0#(minus(m,n)) | (194) |
minus#(BIT0(m),BIT1(n)) | → | minus#(m,n) | (195) |
minus#(BIT0(m),BIT1(n)) | → | BIT0#(minus(m,n)) | (196) |
minus#(BIT0(m),BIT1(n)) | → | PRE#(BIT0(minus(m,n))) | (197) |
minus#(BIT1(m),BIT0(n)) | → | minus#(m,n) | (198) |
minus#(BIT1(m),BIT0(n)) | → | le#(n,m) | (199) |
minus#(BIT1(m),BIT1(n)) | → | minus#(m,n) | (200) |
minus#(BIT1(m),BIT1(n)) | → | BIT0#(minus(m,n)) | (201) |
The dependency pairs are split into 20 components.
eq#(BIT1(m),BIT1(n)) | → | eq#(m,n) | (166) |
eq#(BIT0(m),BIT0(n)) | → | eq#(m,n) | (165) |
eq#(NUMERAL(m),NUMERAL(n)) | → | eq#(m,n) | (162) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
eq#(BIT1(m),BIT1(n)) | → | eq#(m,n) | (166) |
2 | > | 2 | |
1 | > | 1 | |
eq#(BIT0(m),BIT0(n)) | → | eq#(m,n) | (165) |
2 | > | 2 | |
1 | > | 1 | |
eq#(NUMERAL(m),NUMERAL(n)) | → | eq#(m,n) | (162) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
eq#(0,BIT0(n)) | → | eq#(0,n) | (164) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
eq#(0,BIT0(n)) | → | eq#(0,n) | (164) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
exp#(NUMERAL(m),NUMERAL(n)) | → | exp#(m,n) | (146) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
exp#(NUMERAL(m),NUMERAL(n)) | → | exp#(m,n) | (146) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
exp#(BIT0(m),BIT1(n)) | → | exp#(BIT0(m),n) | (154) |
exp#(BIT0(m),BIT0(n)) | → | exp#(BIT0(m),n) | (150) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
exp#(BIT0(m),BIT1(n)) | → | exp#(BIT0(m),n) | (154) |
2 | > | 2 | |
1 | ≥ | 1 | |
exp#(BIT0(m),BIT0(n)) | → | exp#(BIT0(m),n) | (150) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
exp#(0,BIT0(n)) | → | exp#(0,n) | (148) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
exp#(0,BIT0(n)) | → | exp#(0,n) | (148) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
exp#(BIT1(m),BIT1(n)) | → | exp#(BIT1(m),n) | (157) |
exp#(BIT1(m),BIT0(n)) | → | exp#(BIT1(m),n) | (152) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
exp#(BIT1(m),BIT1(n)) | → | exp#(BIT1(m),n) | (157) |
2 | > | 2 | |
1 | ≥ | 1 | |
exp#(BIT1(m),BIT0(n)) | → | exp#(BIT1(m),n) | (152) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
mult#(BIT1(m),BIT1(n)) | → | mult#(m,n) | (140) |
mult#(BIT1(m),BIT0(n)) | → | mult#(m,n) | (136) |
mult#(BIT0(m),BIT1(n)) | → | mult#(m,n) | (132) |
mult#(BIT0(m),BIT0(n)) | → | mult#(m,n) | (129) |
mult#(NUMERAL(m),NUMERAL(n)) | → | mult#(m,n) | (127) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
mult#(BIT1(m),BIT1(n)) | → | mult#(m,n) | (140) |
2 | > | 2 | |
1 | > | 1 | |
mult#(BIT1(m),BIT0(n)) | → | mult#(m,n) | (136) |
2 | > | 2 | |
1 | > | 1 | |
mult#(BIT0(m),BIT1(n)) | → | mult#(m,n) | (132) |
2 | > | 2 | |
1 | > | 1 | |
mult#(BIT0(m),BIT0(n)) | → | mult#(m,n) | (129) |
2 | > | 2 | |
1 | > | 1 | |
mult#(NUMERAL(m),NUMERAL(n)) | → | mult#(m,n) | (127) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
plus#(BIT1(m),BIT0(n)) | → | plus#(m,n) | (123) |
plus#(BIT1(m),BIT1(n)) | → | plus#(m,n) | (124) |
plus#(BIT0(m),BIT1(n)) | → | plus#(m,n) | (122) |
plus#(BIT0(m),BIT0(n)) | → | plus#(m,n) | (120) |
plus#(NUMERAL(m),NUMERAL(n)) | → | plus#(m,n) | (118) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
plus#(BIT1(m),BIT0(n)) | → | plus#(m,n) | (123) |
2 | > | 2 | |
1 | > | 1 | |
plus#(BIT1(m),BIT1(n)) | → | plus#(m,n) | (124) |
2 | > | 2 | |
1 | > | 1 | |
plus#(BIT0(m),BIT1(n)) | → | plus#(m,n) | (122) |
2 | > | 2 | |
1 | > | 1 | |
plus#(BIT0(m),BIT0(n)) | → | plus#(m,n) | (120) |
2 | > | 2 | |
1 | > | 1 | |
plus#(NUMERAL(m),NUMERAL(n)) | → | plus#(m,n) | (118) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
SUC#(BIT1(n)) | → | SUC#(n) | (111) |
SUC#(NUMERAL(n)) | → | SUC#(n) | (109) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
SUC#(BIT1(n)) | → | SUC#(n) | (111) |
1 | > | 1 | |
SUC#(NUMERAL(n)) | → | SUC#(n) | (109) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
EVEN#(NUMERAL(n)) | → | EVEN#(n) | (160) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
EVEN#(NUMERAL(n)) | → | EVEN#(n) | (160) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
ODD#(NUMERAL(n)) | → | ODD#(n) | (161) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ODD#(NUMERAL(n)) | → | ODD#(n) | (161) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
gt#(BIT1(n),BIT1(m)) | → | gt#(n,m) | (190) |
gt#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (189) |
gt#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (188) |
ge#(BIT1(n),BIT1(m)) | → | ge#(n,m) | (184) |
ge#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (183) |
gt#(BIT0(n),BIT0(m)) | → | gt#(n,m) | (187) |
gt#(NUMERAL(n),NUMERAL(m)) | → | gt#(n,m) | (185) |
ge#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (182) |
ge#(BIT0(n),BIT0(m)) | → | ge#(n,m) | (181) |
ge#(NUMERAL(n),NUMERAL(m)) | → | ge#(n,m) | (179) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
gt#(BIT1(n),BIT1(m)) | → | gt#(n,m) | (190) |
2 | > | 2 | |
1 | > | 1 | |
gt#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (189) |
2 | > | 2 | |
1 | > | 1 | |
gt#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (188) |
2 | > | 2 | |
1 | > | 1 | |
ge#(BIT1(n),BIT1(m)) | → | ge#(n,m) | (184) |
2 | > | 2 | |
1 | > | 1 | |
ge#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (183) |
2 | > | 2 | |
1 | > | 1 | |
gt#(BIT0(n),BIT0(m)) | → | gt#(n,m) | (187) |
2 | > | 2 | |
1 | > | 1 | |
gt#(NUMERAL(n),NUMERAL(m)) | → | gt#(n,m) | (185) |
2 | > | 2 | |
1 | > | 1 | |
ge#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (182) |
2 | > | 2 | |
1 | > | 1 | |
ge#(BIT0(n),BIT0(m)) | → | ge#(n,m) | (181) |
2 | > | 2 | |
1 | > | 1 | |
ge#(NUMERAL(n),NUMERAL(m)) | → | ge#(n,m) | (179) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
ge#(0,BIT0(n)) | → | ge#(0,n) | (180) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ge#(0,BIT0(n)) | → | ge#(0,n) | (180) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
gt#(BIT0(n),0) | → | gt#(n,0) | (186) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
gt#(BIT0(n),0) | → | gt#(n,0) | (186) |
2 | ≥ | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
minus#(BIT1(m),BIT1(n)) | → | minus#(m,n) | (200) |
minus#(BIT1(m),BIT0(n)) | → | minus#(m,n) | (198) |
minus#(BIT0(m),BIT1(n)) | → | minus#(m,n) | (195) |
minus#(BIT0(m),BIT0(n)) | → | minus#(m,n) | (193) |
minus#(NUMERAL(m),NUMERAL(n)) | → | minus#(m,n) | (191) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
minus#(BIT1(m),BIT1(n)) | → | minus#(m,n) | (200) |
2 | > | 2 | |
1 | > | 1 | |
minus#(BIT1(m),BIT0(n)) | → | minus#(m,n) | (198) |
2 | > | 2 | |
1 | > | 1 | |
minus#(BIT0(m),BIT1(n)) | → | minus#(m,n) | (195) |
2 | > | 2 | |
1 | > | 1 | |
minus#(BIT0(m),BIT0(n)) | → | minus#(m,n) | (193) |
2 | > | 2 | |
1 | > | 1 | |
minus#(NUMERAL(m),NUMERAL(n)) | → | minus#(m,n) | (191) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
PRE#(BIT0(n)) | → | PRE#(n) | (115) |
PRE#(NUMERAL(n)) | → | PRE#(n) | (113) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
PRE#(BIT0(n)) | → | PRE#(n) | (115) |
1 | > | 1 | |
PRE#(NUMERAL(n)) | → | PRE#(n) | (113) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
eq#(BIT0(n),0) | → | eq#(n,0) | (163) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
eq#(BIT0(n),0) | → | eq#(n,0) | (163) |
2 | ≥ | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
le#(BIT1(m),BIT1(n)) | → | le#(m,n) | (172) |
le#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (171) |
lt#(BIT1(m),BIT1(n)) | → | lt#(m,n) | (178) |
lt#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (177) |
lt#(BIT0(m),BIT1(n)) | → | le#(m,n) | (176) |
le#(BIT0(m),BIT1(n)) | → | le#(m,n) | (170) |
le#(BIT0(m),BIT0(n)) | → | le#(m,n) | (169) |
le#(NUMERAL(m),NUMERAL(n)) | → | le#(m,n) | (167) |
lt#(BIT0(m),BIT0(n)) | → | lt#(m,n) | (175) |
lt#(NUMERAL(m),NUMERAL(n)) | → | lt#(m,n) | (173) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
le#(BIT1(m),BIT1(n)) | → | le#(m,n) | (172) |
2 | > | 2 | |
1 | > | 1 | |
le#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (171) |
2 | > | 2 | |
1 | > | 1 | |
lt#(BIT1(m),BIT1(n)) | → | lt#(m,n) | (178) |
2 | > | 2 | |
1 | > | 1 | |
lt#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (177) |
2 | > | 2 | |
1 | > | 1 | |
lt#(BIT0(m),BIT1(n)) | → | le#(m,n) | (176) |
2 | > | 2 | |
1 | > | 1 | |
le#(BIT0(m),BIT1(n)) | → | le#(m,n) | (170) |
2 | > | 2 | |
1 | > | 1 | |
le#(BIT0(m),BIT0(n)) | → | le#(m,n) | (169) |
2 | > | 2 | |
1 | > | 1 | |
le#(NUMERAL(m),NUMERAL(n)) | → | le#(m,n) | (167) |
2 | > | 2 | |
1 | > | 1 | |
lt#(BIT0(m),BIT0(n)) | → | lt#(m,n) | (175) |
2 | > | 2 | |
1 | > | 1 | |
lt#(NUMERAL(m),NUMERAL(n)) | → | lt#(m,n) | (173) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
lt#(0,BIT0(n)) | → | lt#(0,n) | (174) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
lt#(0,BIT0(n)) | → | lt#(0,n) | (174) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
le#(BIT0(n),0) | → | le#(n,0) | (168) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
le#(BIT0(n),0) | → | le#(n,0) | (168) |
2 | ≥ | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.