The rewrite relation of the following TRS is considered.
comp(s,id) | → | s | (1) |
cons(one,shift) | → | id | (2) |
cons(comp(one,s),comp(shift,s)) | → | s | (3) |
comp(one,cons(s,t)) | → | s | (4) |
comp(shift,cons(s,t)) | → | t | (5) |
comp(abs(s),t) | → | abs(comp(s,cons(one,comp(t,shift)))) | (6) |
comp(cons(s,t),u) | → | cons(comp(s,u),comp(t,u)) | (7) |
comp(id,s) | → | s | (8) |
comp(comp(s,t),u) | → | comp(s,comp(t,u)) | (9) |
prec(abs) | = | 0 | status(abs) | = | [1] | list-extension(abs) | = | Lex | ||
prec(cons) | = | 2 | status(cons) | = | [2, 1] | list-extension(cons) | = | Lex | ||
prec(shift) | = | 0 | status(shift) | = | [] | list-extension(shift) | = | Lex | ||
prec(one) | = | 0 | status(one) | = | [] | list-extension(one) | = | Lex | ||
prec(comp) | = | 3 | status(comp) | = | [1, 2] | list-extension(comp) | = | Lex | ||
prec(id) | = | 0 | status(id) | = | [] | list-extension(id) | = | Lex |
[abs(x1)] | = | 1 + 1 · x1 |
[cons(x1, x2)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2) |
[shift] | = | 0 |
[one] | = | max(0) |
[comp(x1, x2)] | = | 0 + 1 · x1 + 1 · x2 |
[id] | = | max(0) |
comp(s,id) | → | s | (1) |
cons(one,shift) | → | id | (2) |
cons(comp(one,s),comp(shift,s)) | → | s | (3) |
comp(one,cons(s,t)) | → | s | (4) |
comp(shift,cons(s,t)) | → | t | (5) |
comp(abs(s),t) | → | abs(comp(s,cons(one,comp(t,shift)))) | (6) |
comp(cons(s,t),u) | → | cons(comp(s,u),comp(t,u)) | (7) |
comp(id,s) | → | s | (8) |
comp(comp(s,t),u) | → | comp(s,comp(t,u)) | (9) |
There are no rules in the TRS. Hence, it is terminating.