The rewrite relation of the following TRS is considered.
le(0,Y) | → | true | (1) |
le(s(X),0) | → | false | (2) |
le(s(X),s(Y)) | → | le(X,Y) | (3) |
minus(0,Y) | → | 0 | (4) |
minus(s(X),Y) | → | ifMinus(le(s(X),Y),s(X),Y) | (5) |
ifMinus(true,s(X),Y) | → | 0 | (6) |
ifMinus(false,s(X),Y) | → | s(minus(X,Y)) | (7) |
quot(0,s(Y)) | → | 0 | (8) |
quot(s(X),s(Y)) | → | s(quot(minus(X,Y),s(Y))) | (9) |
le#(s(X),s(Y)) | → | le#(X,Y) | (10) |
minus#(s(X),Y) | → | le#(s(X),Y) | (11) |
minus#(s(X),Y) | → | ifMinus#(le(s(X),Y),s(X),Y) | (12) |
ifMinus#(false,s(X),Y) | → | minus#(X,Y) | (13) |
quot#(s(X),s(Y)) | → | minus#(X,Y) | (14) |
quot#(s(X),s(Y)) | → | quot#(minus(X,Y),s(Y)) | (15) |
The dependency pairs are split into 3 components.
quot#(s(X),s(Y)) | → | quot#(minus(X,Y),s(Y)) | (15) |
prec(quot#) | = | 0 | stat(quot#) | = | lex | |
prec(ifMinus) | = | 0 | stat(ifMinus) | = | lex | |
prec(minus) | = | 0 | stat(minus) | = | lex | |
prec(false) | = | 0 | stat(false) | = | lex | |
prec(s) | = | 1 | stat(s) | = | lex | |
prec(true) | = | 0 | stat(true) | = | lex | |
prec(le) | = | 0 | stat(le) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex |
π(quot#) | = | 1 |
π(ifMinus) | = | 2 |
π(minus) | = | 1 |
π(false) | = | [] |
π(s) | = | [1] |
π(true) | = | [] |
π(le) | = | [] |
π(0) | = | [] |
minus(0,Y) | → | 0 | (4) |
minus(s(X),Y) | → | ifMinus(le(s(X),Y),s(X),Y) | (5) |
ifMinus(true,s(X),Y) | → | 0 | (6) |
ifMinus(false,s(X),Y) | → | s(minus(X,Y)) | (7) |
quot#(s(X),s(Y)) | → | quot#(minus(X,Y),s(Y)) | (15) |
There are no pairs anymore.
minus#(s(X),Y) | → | ifMinus#(le(s(X),Y),s(X),Y) | (12) |
ifMinus#(false,s(X),Y) | → | minus#(X,Y) | (13) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
minus#(s(X),Y) | → | ifMinus#(le(s(X),Y),s(X),Y) | (12) |
2 | ≥ | 3 | |
1 | ≥ | 2 | |
ifMinus#(false,s(X),Y) | → | minus#(X,Y) | (13) |
3 | ≥ | 2 | |
2 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
le#(s(X),s(Y)) | → | le#(X,Y) | (10) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
le#(s(X),s(Y)) | → | le#(X,Y) | (10) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.