The rewrite relation of the following TRS is considered.
dx(X) | → | one | (1) |
dx(a) | → | zero | (2) |
dx(plus(ALPHA,BETA)) | → | plus(dx(ALPHA),dx(BETA)) | (3) |
dx(times(ALPHA,BETA)) | → | plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) | (4) |
dx(minus(ALPHA,BETA)) | → | minus(dx(ALPHA),dx(BETA)) | (5) |
dx(neg(ALPHA)) | → | neg(dx(ALPHA)) | (6) |
dx(div(ALPHA,BETA)) | → | minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) | (7) |
dx(ln(ALPHA)) | → | div(dx(ALPHA),ALPHA) | (8) |
dx(exp(ALPHA,BETA)) | → | plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) | (9) |
dx#(plus(ALPHA,BETA)) | → | dx#(BETA) | (10) |
dx#(plus(ALPHA,BETA)) | → | dx#(ALPHA) | (11) |
dx#(times(ALPHA,BETA)) | → | dx#(BETA) | (12) |
dx#(times(ALPHA,BETA)) | → | dx#(ALPHA) | (13) |
dx#(minus(ALPHA,BETA)) | → | dx#(BETA) | (14) |
dx#(minus(ALPHA,BETA)) | → | dx#(ALPHA) | (15) |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | (16) |
dx#(div(ALPHA,BETA)) | → | dx#(BETA) | (17) |
dx#(div(ALPHA,BETA)) | → | dx#(ALPHA) | (18) |
dx#(ln(ALPHA)) | → | dx#(ALPHA) | (19) |
dx#(exp(ALPHA,BETA)) | → | dx#(BETA) | (20) |
dx#(exp(ALPHA,BETA)) | → | dx#(ALPHA) | (21) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
dx#(plus(ALPHA,BETA)) | → | dx#(BETA) | (10) |
1 | > | 1 | |
dx#(plus(ALPHA,BETA)) | → | dx#(ALPHA) | (11) |
1 | > | 1 | |
dx#(times(ALPHA,BETA)) | → | dx#(BETA) | (12) |
1 | > | 1 | |
dx#(times(ALPHA,BETA)) | → | dx#(ALPHA) | (13) |
1 | > | 1 | |
dx#(minus(ALPHA,BETA)) | → | dx#(BETA) | (14) |
1 | > | 1 | |
dx#(minus(ALPHA,BETA)) | → | dx#(ALPHA) | (15) |
1 | > | 1 | |
dx#(neg(ALPHA)) | → | dx#(ALPHA) | (16) |
1 | > | 1 | |
dx#(div(ALPHA,BETA)) | → | dx#(BETA) | (17) |
1 | > | 1 | |
dx#(div(ALPHA,BETA)) | → | dx#(ALPHA) | (18) |
1 | > | 1 | |
dx#(ln(ALPHA)) | → | dx#(ALPHA) | (19) |
1 | > | 1 | |
dx#(exp(ALPHA,BETA)) | → | dx#(BETA) | (20) |
1 | > | 1 | |
dx#(exp(ALPHA,BETA)) | → | dx#(ALPHA) | (21) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.