Certification Problem

Input (TPDB TRS_Standard/Rubio_04/prov)

The rewrite relation of the following TRS is considered.

ackin(s(X),s(Y)) u21(ackin(s(X),Y),X) (1)
u21(ackout(X),Y) u22(ackin(Y,X)) (2)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Rule Removal

Using the Weighted Path Order with the following precedence and status
prec(u22) = 0 status(u22) = [1] list-extension(u22) = Lex
prec(ackout) = 0 status(ackout) = [1] list-extension(ackout) = Lex
prec(u21) = 0 status(u21) = [2, 1] list-extension(u21) = Lex
prec(ackin) = 4 status(ackin) = [1, 2] list-extension(ackin) = Lex
prec(s) = 0 status(s) = [1] list-extension(s) = Lex
and the following Max-polynomial interpretation
[u22(x1)] = 0 + 1 · x1
[ackout(x1)] = max(3, 5 + 1 · x1)
[u21(x1, x2)] = max(0, 0 + 1 · x1, 6 + 1 · x2)
[ackin(x1, x2)] = max(0, 4 + 1 · x1, 4 + 1 · x2)
[s(x1)] = 2 + 1 · x1
all of the following rules can be deleted.
ackin(s(X),s(Y)) u21(ackin(s(X),Y),X) (1)
u21(ackout(X),Y) u22(ackin(Y,X)) (2)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.