The rewrite relation of the following TRS is considered.
f(j(x,y),y) | → | g(f(x,k(y))) | (1) |
f(x,h1(y,z)) | → | h2(0,x,h1(y,z)) | (2) |
g(h2(x,y,h1(z,u))) | → | h2(s(x),y,h1(z,u)) | (3) |
h2(x,j(y,h1(z,u)),h1(z,u)) | → | h2(s(x),y,h1(s(z),u)) | (4) |
i(f(x,h(y))) | → | y | (5) |
i(h2(s(x),y,h1(x,z))) | → | z | (6) |
k(h(x)) | → | h1(0,x) | (7) |
k(h1(x,y)) | → | h1(s(x),y) | (8) |
prec(i) | = | 6 | weight(i) | = | 1 | ||||
prec(h) | = | 4 | weight(h) | = | 7 | ||||
prec(s) | = | 5 | weight(s) | = | 2 | ||||
prec(h2) | = | 1 | weight(h2) | = | 5 | ||||
prec(0) | = | 11 | weight(0) | = | 2 | ||||
prec(h1) | = | 2 | weight(h1) | = | 5 | ||||
prec(g) | = | 0 | weight(g) | = | 5 | ||||
prec(k) | = | 9 | weight(k) | = | 2 | ||||
prec(f) | = | 3 | weight(f) | = | 7 | ||||
prec(j) | = | 8 | weight(j) | = | 6 |
f(j(x,y),y) | → | g(f(x,k(y))) | (1) |
f(x,h1(y,z)) | → | h2(0,x,h1(y,z)) | (2) |
g(h2(x,y,h1(z,u))) | → | h2(s(x),y,h1(z,u)) | (3) |
h2(x,j(y,h1(z,u)),h1(z,u)) | → | h2(s(x),y,h1(s(z),u)) | (4) |
i(f(x,h(y))) | → | y | (5) |
i(h2(s(x),y,h1(x,z))) | → | z | (6) |
k(h(x)) | → | h1(0,x) | (7) |
k(h1(x,y)) | → | h1(s(x),y) | (8) |
There are no rules in the TRS. Hence, it is terminating.