Certification Problem

Input (TPDB TRS_Standard/SK90/4.14)

The rewrite relation of the following TRS is considered.

p(s(x)) x (1)
s(p(x)) x (2)
+(0,y) y (3)
+(s(x),y) s(+(x,y)) (4)
+(p(x),y) p(+(x,y)) (5)
minus(0) 0 (6)
minus(s(x)) p(minus(x)) (7)
minus(p(x)) s(minus(x)) (8)
*(0,y) 0 (9)
*(s(x),y) +(*(x,y),y) (10)
*(p(x),y) +(*(x,y),minus(y)) (11)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Rule Removal

Using the Weighted Path Order with the following precedence and status
prec(*) = 3 status(*) = [1, 2] list-extension(*) = Lex
prec(minus) = 1 status(minus) = [1] list-extension(minus) = Lex
prec(+) = 1 status(+) = [1, 2] list-extension(+) = Lex
prec(0) = 0 status(0) = [] list-extension(0) = Lex
prec(p) = 0 status(p) = [1] list-extension(p) = Lex
prec(s) = 0 status(s) = [1] list-extension(s) = Lex
and the following Max-polynomial interpretation
[*(x1, x2)] = max(4, 5 + 1 · x1, 3 + 1 · x2)
[minus(x1)] = 3 + 1 · x1
[+(x1, x2)] = max(4, 0 + 1 · x1, 0 + 1 · x2)
[0] = max(1)
[p(x1)] = 0 + 1 · x1
[s(x1)] = max(3, 0 + 1 · x1)
all of the following rules can be deleted.
p(s(x)) x (1)
s(p(x)) x (2)
+(0,y) y (3)
+(s(x),y) s(+(x,y)) (4)
+(p(x),y) p(+(x,y)) (5)
minus(0) 0 (6)
minus(s(x)) p(minus(x)) (7)
minus(p(x)) s(minus(x)) (8)
*(0,y) 0 (9)
*(s(x),y) +(*(x,y),y) (10)
*(p(x),y) +(*(x,y),minus(y)) (11)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.