The rewrite relation of the following TRS is considered.
f(c(c(a,y,a),b(x,z),a)) | → | b(y,f(c(f(a),z,z))) | (1) |
f(b(b(x,f(y)),z)) | → | c(z,x,f(b(b(f(a),y),y))) | (2) |
c(b(a,a),b(y,z),x) | → | b(a,b(z,z)) | (3) |
f#(c(c(a,y,a),b(x,z),a)) | → | f#(a) | (4) |
f#(c(c(a,y,a),b(x,z),a)) | → | c#(f(a),z,z) | (5) |
f#(c(c(a,y,a),b(x,z),a)) | → | f#(c(f(a),z,z)) | (6) |
f#(b(b(x,f(y)),z)) | → | f#(a) | (7) |
f#(b(b(x,f(y)),z)) | → | f#(b(b(f(a),y),y)) | (8) |
f#(b(b(x,f(y)),z)) | → | c#(z,x,f(b(b(f(a),y),y))) | (9) |
The dependency pairs are split into 1 component.
f#(b(b(x,f(y)),z)) | → | f#(b(b(f(a),y),y)) | (8) |
[f#(x1)] | = | -6 · x1 + 0 |
[f(x1)] | = | 2 · x1 + 5 |
[a] | = | 3 |
[b(x1, x2)] | = | 0 · x1 + 2 · x2 + 6 |
f#(b(b(x,f(y)),z)) | → | f#(b(b(f(a),y),y)) | (8) |
There are no pairs anymore.