The rewrite relation of the following TRS is considered.
b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (4) |
b#(a,b(c(z,x,y),a)) | → | b#(z,c(y,z,a)) | (5) |
b#(a,b(c(z,x,y),a)) | → | b#(b(z,c(y,z,a)),x) | (6) |
f#(c(a,b(b(z,a),y),x)) | → | b#(z,x) | (7) |
f#(c(a,b(b(z,a),y),x)) | → | c#(x,b(z,x),y) | (8) |
f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (9) |
c#(f(c(a,y,a)),x,z) | → | b#(x,a) | (10) |
c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (11) |
c#(f(c(a,y,a)),x,z) | → | f#(b(y,b(x,a))) | (12) |
c#(f(c(a,y,a)),x,z) | → | b#(z,z) | (13) |
c#(f(c(a,y,a)),x,z) | → | b#(b(z,z),f(b(y,b(x,a)))) | (14) |
c#(f(c(a,y,a)),x,z) | → | f#(b(b(z,z),f(b(y,b(x,a))))) | (15) |
The dependency pairs are split into 2 components.
f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (9) |
[c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||
[f(x1)] | = |
|
||||||||||||||||||||||||||||
[a] | = |
|
||||||||||||||||||||||||||||
[f#(x1)] | = |
|
||||||||||||||||||||||||||||
[b(x1, x2)] | = |
|
b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (9) |
There are no pairs anymore.
c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (11) |
b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (4) |
[b#(x1, x2)] | = | 0 · x1 + 0 · x2 + 0 |
[c(x1, x2, x3)] | = | 3 · x1 + 0 · x2 + 0 · x3 + 1 |
[f(x1)] | = | 0 · x1 + 0 |
[c#(x1, x2, x3)] | = | 0 · x1 + 4 · x2 + 0 · x3 + 0 |
[a] | = | 0 |
[b(x1, x2)] | = | 4 · x1 + 0 · x2 + 3 |
b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (4) |
The dependency pairs are split into 0 components.