The rewrite relation of the following TRS is considered.
c(c(z,y,a),a,a) | → | b(z,y) | (1) |
f(c(x,y,z)) | → | c(z,f(b(y,z)),a) | (2) |
b(z,b(c(a,y,a),f(f(x)))) | → | c(c(y,a,z),z,x) | (3) |
c#(c(z,y,a),a,a) | → | b#(z,y) | (4) |
f#(c(x,y,z)) | → | b#(y,z) | (5) |
f#(c(x,y,z)) | → | f#(b(y,z)) | (6) |
f#(c(x,y,z)) | → | c#(z,f(b(y,z)),a) | (7) |
b#(z,b(c(a,y,a),f(f(x)))) | → | c#(y,a,z) | (8) |
b#(z,b(c(a,y,a),f(f(x)))) | → | c#(c(y,a,z),z,x) | (9) |
The dependency pairs are split into 2 components.
f#(c(x,y,z)) | → | f#(b(y,z)) | (6) |
[c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||
[f(x1)] | = |
|
||||||||||||||||||||||||||||
[a] | = |
|
||||||||||||||||||||||||||||
[f#(x1)] | = |
|
||||||||||||||||||||||||||||
[b(x1, x2)] | = |
|
b(z,b(c(a,y,a),f(f(x)))) | → | c(c(y,a,z),z,x) | (3) |
c(c(z,y,a),a,a) | → | b(z,y) | (1) |
f#(c(x,y,z)) | → | f#(b(y,z)) | (6) |
There are no pairs anymore.
b#(z,b(c(a,y,a),f(f(x)))) | → | c#(c(y,a,z),z,x) | (9) |
c#(c(z,y,a),a,a) | → | b#(z,y) | (4) |
b#(z,b(c(a,y,a),f(f(x)))) | → | c#(y,a,z) | (8) |
π(b#) | = | { 1, 1, 1, 2 } |
π(c#) | = | { 1, 1, 1 } |
π(b) | = | { 1, 1, 1, 2, 2 } |
π(c) | = | { 1, 1, 1, 2, 2, 2 } |
b#(z,b(c(a,y,a),f(f(x)))) | → | c#(c(y,a,z),z,x) | (9) |
c#(c(z,y,a),a,a) | → | b#(z,y) | (4) |
b#(z,b(c(a,y,a),f(f(x)))) | → | c#(y,a,z) | (8) |
There are no pairs anymore.