Certification Problem

Input (TPDB TRS_Standard/Secret_07_TRS/secret1)

The rewrite relation of the following TRS is considered.

D(t) s(h) (1)
D(constant) h (2)
D(b(x,y)) b(D(x),D(y)) (3)
D(c(x,y)) b(c(y,D(x)),c(x,D(y))) (4)
D(m(x,y)) m(D(x),D(y)) (5)
D(opp(x)) opp(D(x)) (6)
D(div(x,y)) m(div(D(x),y),div(c(x,D(y)),pow(y,2))) (7)
D(ln(x)) div(D(x),x) (8)
D(pow(x,y)) b(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) (9)
b(h,x) x (10)
b(x,h) x (11)
b(s(x),s(y)) s(s(b(x,y))) (12)
b(b(x,y),z) b(x,b(y,z)) (13)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
D#(b(x,y)) D#(y) (14)
D#(b(x,y)) D#(x) (15)
D#(b(x,y)) b#(D(x),D(y)) (16)
D#(c(x,y)) D#(y) (17)
D#(c(x,y)) D#(x) (18)
D#(c(x,y)) b#(c(y,D(x)),c(x,D(y))) (19)
D#(m(x,y)) D#(y) (20)
D#(m(x,y)) D#(x) (21)
D#(opp(x)) D#(x) (22)
D#(div(x,y)) D#(y) (23)
D#(div(x,y)) D#(x) (24)
D#(ln(x)) D#(x) (25)
D#(pow(x,y)) D#(y) (26)
D#(pow(x,y)) D#(x) (27)
D#(pow(x,y)) b#(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) (28)
b#(s(x),s(y)) b#(x,y) (29)
b#(b(x,y),z) b#(y,z) (30)
b#(b(x,y),z) b#(x,b(y,z)) (31)

1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.