The rewrite relation of the following TRS is considered.
f(a,f(b,x)) | → | f(a,f(a,f(a,x))) | (1) |
f(b,f(a,x)) | → | f(b,f(b,f(b,x))) | (2) |
f#(a,f(b,x)) | → | f#(a,x) | (3) |
f#(a,f(b,x)) | → | f#(a,f(a,x)) | (4) |
f#(a,f(b,x)) | → | f#(a,f(a,f(a,x))) | (5) |
f#(b,f(a,x)) | → | f#(b,x) | (6) |
f#(b,f(a,x)) | → | f#(b,f(b,x)) | (7) |
f#(b,f(a,x)) | → | f#(b,f(b,f(b,x))) | (8) |
The dependency pairs are split into 2 components.
f#(a,f(b,x)) | → | f#(a,f(a,f(a,x))) | (5) |
f#(a,f(b,x)) | → | f#(a,f(a,x)) | (4) |
f#(a,f(b,x)) | → | f#(a,x) | (3) |
prec(f#) | = | 0 | stat(f#) | = | lex | |
prec(f) | = | 0 | stat(f) | = | lex | |
prec(b) | = | 1 | stat(b) | = | lex | |
prec(a) | = | 0 | stat(a) | = | lex |
π(f#) | = | 2 |
π(f) | = | [1,2] |
π(b) | = | [] |
π(a) | = | [] |
f(a,f(b,x)) | → | f(a,f(a,f(a,x))) | (1) |
f#(a,f(b,x)) | → | f#(a,f(a,f(a,x))) | (5) |
f#(a,f(b,x)) | → | f#(a,f(a,x)) | (4) |
f#(a,f(b,x)) | → | f#(a,x) | (3) |
There are no pairs anymore.
f#(b,f(a,x)) | → | f#(b,f(b,f(b,x))) | (8) |
f#(b,f(a,x)) | → | f#(b,f(b,x)) | (7) |
f#(b,f(a,x)) | → | f#(b,x) | (6) |
prec(f#) | = | 0 | stat(f#) | = | lex | |
prec(f) | = | 0 | stat(f) | = | lex | |
prec(b) | = | 0 | stat(b) | = | lex | |
prec(a) | = | 1 | stat(a) | = | lex |
π(f#) | = | 2 |
π(f) | = | [1,2] |
π(b) | = | [] |
π(a) | = | [] |
f(b,f(a,x)) | → | f(b,f(b,f(b,x))) | (2) |
f#(b,f(a,x)) | → | f#(b,f(b,f(b,x))) | (8) |
f#(b,f(a,x)) | → | f#(b,f(b,x)) | (7) |
f#(b,f(a,x)) | → | f#(b,x) | (6) |
There are no pairs anymore.