# LTS Termination Proof

by T2Cert

## Input

Integer Transition System
• Initial Location: 8
• Transitions: (pre-variables and post-variables)  0 0 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg3P ≤ 0 ∧ −1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 0 1 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x8 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 2 3 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x14 ≤ 0 ∧ 2 − arg3 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P + arg3 ≤ 0 ∧ arg2P − arg3 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 1 4 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ 1 − arg2 + arg3 ≤ 0 ∧ − arg4P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ arg2 − arg5P ≤ 0 ∧ − arg2 + arg5P ≤ 0 ∧ 1 + arg3 − arg6P ≤ 0 ∧ −1 − arg3 + arg6P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 5 5 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg6 ≤ 0 ∧ 1 − arg1 + arg2 ≤ 0 ∧ − arg1 + arg2 ≤ 0 ∧ − arg2 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − arg1P + arg2 ≤ 0 ∧ 1 + arg1P − arg2 ≤ 0 ∧ − arg2P + arg5 ≤ 0 ∧ arg2P − arg5 ≤ 0 ∧ − arg3P + arg6 ≤ 0 ∧ arg3P − arg6 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 5 6 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg6 ≤ 0 ∧ 1 − arg1 + arg2 ≤ 0 ∧ − arg1 + arg2 ≤ 0 ∧ − arg2 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg6P + arg6P ≤ 0 ∧ arg6P − arg6P ≤ 0 ∧ − arg6 + arg6 ≤ 0 ∧ arg6 − arg6 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 5 7 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg6 ≤ 0 ∧ 1 − arg1 + arg2 ≤ 0 ∧ − arg1 + arg2 ≤ 0 ∧ − arg2 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 4 8 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 2 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 4 9 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 1 − arg1 + arg5P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 5 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg5P ≤ 0 ∧ arg2 − arg4P ≤ 0 ∧ − arg2 + arg4P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 4 11 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −7 + arg1P − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ 1 − arg1 + arg5P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 8 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg5P ≤ 0 ∧ arg2 − arg4P ≤ 0 ∧ − arg2 + arg4P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 6 12 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 2 − arg4 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ arg1P − arg5 ≤ 0 ∧ 5 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg5 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P + arg4 ≤ 0 ∧ arg2P − arg4 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 4 13 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 4 + arg1P − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 5 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 8 14 0: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0

## Proof

The following invariants are asserted.

 0: TRUE 1: TRUE 2: 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − x8 ≤ 0 4: − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ − x8 ≤ 0 ∧ 1 − x14 ≤ 0 5: − arg4P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg4 ≤ 0 6: 5 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg5P ≤ 0 ∧ 5 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg5 ≤ 0 ∧ − x8 ≤ 0 ∧ 1 − x14 ≤ 0 8: TRUE

The invariants are proved as follows.

### IMPACT Invariant Proof

• nodes (location) invariant:  0 (0) TRUE 1 (1) TRUE 2 (2) 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − x8 ≤ 0 4 (4) − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ − x8 ≤ 0 ∧ 1 − x14 ≤ 0 5 (5) − arg4P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg4 ≤ 0 6 (6) 5 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg5P ≤ 0 ∧ 5 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg5 ≤ 0 ∧ − x8 ≤ 0 ∧ 1 − x14 ≤ 0 8 (8) TRUE
• initial node: 8
• cover edges:
• transition edges:  0 0 1 0 1 2 1 4 5 2 3 4 4 8 4 4 9 6 4 11 6 4 13 4 5 5 1 5 6 5 5 7 5 6 12 4 8 14 0

### 2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 1 15 1: − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg6P + arg6P ≤ 0 ∧ arg6P − arg6P ≤ 0 ∧ − arg6 + arg6 ≤ 0 ∧ arg6 − arg6 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 4 22 4: − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg6P + arg6P ≤ 0 ∧ arg6P − arg6P ≤ 0 ∧ − arg6 + arg6 ≤ 0 ∧ arg6 − arg6 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 5 29 5: − x8 + x8 ≤ 0 ∧ x8 − x8 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − arg6P + arg6P ≤ 0 ∧ arg6P − arg6P ≤ 0 ∧ − arg6 + arg6 ≤ 0 ∧ arg6 − arg6 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
and for every transition t, a duplicate t is considered.

### 3 Transition Removal

We remove transitions 0, 1, 3, 14 using the following ranking functions, which are bounded by −19.

 8: 0 0: 0 1: 0 5: 0 2: 0 4: 0 6: 0 8: −6 0: −7 1: −8 5: −8 1_var_snapshot: −8 1*: −8 5_var_snapshot: −8 5*: −8 2: −13 4: −14 6: −14 4_var_snapshot: −14 4*: −14

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 18 1: x8 + x8 ≤ 0x8x8 ≤ 0x14 + x14 ≤ 0x14x14 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 16 1_var_snapshot: x8 + x8 ≤ 0x8x8 ≤ 0x14 + x14 ≤ 0x14x14 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 25 4: x8 + x8 ≤ 0x8x8 ≤ 0x14 + x14 ≤ 0x14x14 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 23 4_var_snapshot: x8 + x8 ≤ 0x8x8 ≤ 0x14 + x14 ≤ 0x14x14 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 32 5: x8 + x8 ≤ 0x8x8 ≤ 0x14 + x14 ≤ 0x14x14 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 30 5_var_snapshot: x8 + x8 ≤ 0x8x8 ≤ 0x14 + x14 ≤ 0x14x14 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

### 10 SCC Decomposition

We consider subproblems for each of the 2 SCC(s) of the program graph.

### 10.1 SCC Subproblem 1/2

Here we consider the SCC { 1, 5, 1_var_snapshot, 1*, 5_var_snapshot, 5* }.

### 10.1.1 Transition Removal

We remove transitions 4, 5 using the following ranking functions, which are bounded by −1.

 1: 4 + 4⋅arg1 5: 4⋅arg1 1_var_snapshot: 2 + 4⋅arg1 1*: 6 + 4⋅arg1 5_var_snapshot: 4⋅arg1 5*: 4⋅arg1

### 10.1.2 Transition Removal

We remove transitions 16, 18, 6, 7 using the following ranking functions, which are bounded by −1.

 1: 0 5: 1 − 3⋅arg3 + 3⋅arg4 1_var_snapshot: −1 1*: 1 5_var_snapshot: −3⋅arg3 + 3⋅arg4 5*: 2 − 3⋅arg3 + 3⋅arg4

### 10.1.3 Transition Removal

We remove transitions 30, 32 using the following ranking functions, which are bounded by −2.

 1: 0 5: −1 1_var_snapshot: 0 1*: 0 5_var_snapshot: −2 5*: 0

### 10.1.4 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

### 10.1.4.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 15.

### 10.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 10.1.4.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 29.

### 10.1.4.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 10.2 SCC Subproblem 2/2

Here we consider the SCC { 4, 6, 4_var_snapshot, 4* }.

### 10.2.1 Transition Removal

We remove transitions 23, 25, 8, 9, 11, 12, 13 using the following ranking functions, which are bounded by −1.

 4: 1 + 4⋅arg1 6: 3 + 4⋅arg2 4_var_snapshot: 4⋅arg1 4*: 2 + 4⋅arg1

### 10.2.2 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 10.2.2.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 22.

### 10.2.2.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0